J
		
		2024
			
	    
Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation
	    BOYKO, Vyacheslav M.; Roman POPOVYCH a Oleksandra O. VINNICHENKO
	
	
	
	    
	
     
 
	
	Základní údaje
	
		Originální název
		Point- and contact-symmetry pseudogroups of dispersionless Nizhnik equation
	 
				Autoři
				BOYKO, Vyacheslav M. (804 Ukrajina, garant); 
Roman POPOVYCH (804 Ukrajina, domácí) a Oleksandra O. VINNICHENKO (804 Ukrajina)
 
			
				Vydání
				 Communications in Nonlinear Science and Numerical Simulation, Amsterdam, Elsevier B.V. 2024, 1007-5704
			 
		
Další údaje
		
	
		
			Typ výsledku
			Článek v odborném periodiku
		 
	
		
			Obor
			10101 Pure mathematics
		 
	
		
			Stát vydavatele
			Nizozemské království
		 
	
		
			Utajení
			není předmětem státního či obchodního tajemství
		 
	
			
		
			
				Impakt faktor
				Impact factor: 3.800
			 
		
		
			Kód RIV
			RIV/47813059:19610/24:A0000166
		 
	
			
				Organizační jednotka
				Matematický ústav v Opavě
			 
		
			
		
		
			EID Scopus
			2-s2.0-85185836496
		 
		
			Klíčová slova anglicky
			Dispersionless Nizhnik equation; Point-symmetry pseudogroup; Lie invariance algebra; Discrete symmetry
		 
			Příznaky
			Mezinárodní význam, Recenzováno
		 
			
			
				
					V originále
					Applying an original megaideal-based version of the algebraic method, we compute the pointsymmetry pseudogroup of the dispersionless (potential symmetric) Nizhnik equation. This is the first example of this kind in the literature, where there is no need to use the direct method for completing the computation. The analogous studies are also carried out for the corresponding nonlinear Lax representation and the dispersionless counterpart of the symmetric Nizhnik system. We also first apply the megaideal-based version of the algebraic method to find the contact-symmetry (pseudo)group of a partial differential equation. It is shown that the contact-symmetry pseudogroup of the dispersionless Nizhnik equation coincides with the first prolongation of its point-symmetry pseudogroup. We check whether the subalgebras of the maximal Lie invariance algebra of the dispersionless Nizhnik equation that naturally arise in the course of the above computations define the diffeomorphisms stabilizing this algebra or its first prolongation. In addition, we construct all the third-order partial differential equations in three independent variables that admit the same Lie invariance algebra. We also find a set of geometric properties of the dispersionless Nizhnik equation that exhaustively defines it.
				  
				Zobrazeno: 31. 10. 2025 22:37