2024
			
	    
	
	
    Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation
KOVAL, Serhii D. a Roman POPOVYCHZákladní údaje
Originální název
Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation
	Autoři
KOVAL, Serhii D. (804 Ukrajina, garant) a Roman POPOVYCH (804 Ukrajina, domácí)
			Vydání
 Studies in Applied Mathematics, Hoboken (USA), John Wiley and Sons, Inc. 2024, 0022-2526
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10101 Pure mathematics
		Stát vydavatele
Spojené státy
		Utajení
není předmětem státního či obchodního tajemství
		Impakt faktor
Impact factor: 2.300
			Kód RIV
RIV/47813059:19610/24:A0000168
		Organizační jednotka
Matematický ústav v Opavě
			UT WoS
001202807700001
		EID Scopus
2-s2.0-85191006238
		Klíčová slova anglicky
(1+2)-dimensional ultraparabolic linear Kolmogorov backward equations; classification of subalgebras; exact solutions; generalized symmetry; Lie reductions; point-symmetry group
		Příznaky
Mezinárodní význam, Recenzováno
		
				
				Změněno: 20. 3. 2025 17:12, Mgr. Aleš Ryšavý
				
		Anotace
V originále
Within the class of (1+2)-dimensional ultraparabolic linear equations, we distinguish a fine Kolmogorov backward equation with a quadratic diffusivity. Modulo the point equivalence, it is a unique equation within the class whose essential Lie invariance algebra is five-dimensional and nonsolvable. Using the direct method, we compute the point symmetry pseudogroup of this equation and analyze its structure. In particular, we single out its essential subgroup and classify its discrete elements. We exhaustively classify all subalgebras of the corresponding essential Lie invariance algebra up to inner automorphisms and up to the action of the essential point-symmetry group. This allowed us to classify Lie reductions and Lie invariant solutions of the equation under consideration. We also discuss the generation of its solutions using point and linear generalized symmetries and carry out its peculiar generalized reductions. As a result, we construct wide families of its solutions parameterized by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation or one or two arbitrary solutions of (1+1)-dimensional linear heat equations with inverse square potentials.