J 2024

Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation

KOVAL, Serhii D a Roman POPOVYCH

Základní údaje

Originální název

Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation

Autoři

KOVAL, Serhii D a Roman POPOVYCH

Vydání

Studies in Applied Mathematics, Hoboken (USA), John Wiley and Sons, Inc. 2024, 0022-2526

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 2.700 v roce 2022

Organizační jednotka

Matematický ústav v Opavě

UT WoS

001202807700001

Klíčová slova anglicky

(1+2)-dimensional ultraparabolic linear Kolmogorov backward equations; classification of subalgebras; exact solutions; generalized symmetry; Lie reductions; point-symmetry group

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 29. 1. 2025 14:25, Mgr. Aleš Ryšavý

Anotace

V originále

Within the class of (1+2)-dimensional ultraparabolic linear equations, we distinguish a fine Kolmogorov backward equation with a quadratic diffusivity. Modulo the point equivalence, it is a unique equation within the class whose essential Lie invariance algebra is five-dimensional and nonsolvable. Using the direct method, we compute the point symmetry pseudogroup of this equation and analyze its structure. In particular, we single out its essential subgroup and classify its discrete elements. We exhaustively classify all subalgebras of the corresponding essential Lie invariance algebra up to inner automorphisms and up to the action of the essential point-symmetry group. This allowed us to classify Lie reductions and Lie invariant solutions of the equation under consideration. We also discuss the generation of its solutions using point and linear generalized symmetries and carry out its peculiar generalized reductions. As a result, we construct wide families of its solutions parameterized by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation or one or two arbitrary solutions of (1+1)-dimensional linear heat equations with inverse square potentials.