2024
Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation
KOVAL, Serhii D a Roman POPOVYCHZákladní údaje
Originální název
Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation
Autoři
KOVAL, Serhii D a Roman POPOVYCH
Vydání
Studies in Applied Mathematics, Hoboken (USA), John Wiley and Sons, Inc. 2024, 0022-2526
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 2.700 v roce 2022
Organizační jednotka
Matematický ústav v Opavě
UT WoS
001202807700001
Klíčová slova anglicky
(1+2)-dimensional ultraparabolic linear Kolmogorov backward equations; classification of subalgebras; exact solutions; generalized symmetry; Lie reductions; point-symmetry group
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 29. 1. 2025 14:25, Mgr. Aleš Ryšavý
Anotace
V originále
Within the class of (1+2)-dimensional ultraparabolic linear equations, we distinguish a fine Kolmogorov backward equation with a quadratic diffusivity. Modulo the point equivalence, it is a unique equation within the class whose essential Lie invariance algebra is five-dimensional and nonsolvable. Using the direct method, we compute the point symmetry pseudogroup of this equation and analyze its structure. In particular, we single out its essential subgroup and classify its discrete elements. We exhaustively classify all subalgebras of the corresponding essential Lie invariance algebra up to inner automorphisms and up to the action of the essential point-symmetry group. This allowed us to classify Lie reductions and Lie invariant solutions of the equation under consideration. We also discuss the generation of its solutions using point and linear generalized symmetries and carry out its peculiar generalized reductions. As a result, we construct wide families of its solutions parameterized by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation or one or two arbitrary solutions of (1+1)-dimensional linear heat equations with inverse square potentials.