2024
			
	    
	
	
    Admissible transformations and Lie symmetries of linear systems of second-order ordinary differential equations
BOYKO, Vyacheslav M.; Oleksandra V. LOKAZIUK a Roman POPOVYCHZákladní údaje
Originální název
Admissible transformations and Lie symmetries of linear systems of second-order ordinary differential equations
	Autoři
BOYKO, Vyacheslav M. (804 Ukrajina, garant); Oleksandra V. LOKAZIUK (804 Ukrajina) a Roman POPOVYCH (804 Ukrajina, domácí)
			Vydání
 Journal of Mathematical Analysis and Applications, San Diego (USA), Academic Press Inc. Elsevier Science, 2024, 0022-247X
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10101 Pure mathematics
		Stát vydavatele
Spojené státy
		Utajení
není předmětem státního či obchodního tajemství
		Impakt faktor
Impact factor: 1.200
			Kód RIV
RIV/47813059:19610/24:A0000170
		Organizační jednotka
Matematický ústav v Opavě
			UT WoS
001258348400001
		EID Scopus
2-s2.0-85195081035
		Klíčová slova anglicky
Algebraic method of group classification; Equivalence algebra; Equivalence group; Equivalence groupoid; Group classification of differential equations; Lie symmetry; Linear systems of second-order ordinary differential equations
		Příznaky
Mezinárodní význam, Recenzováno
		
				
				Změněno: 20. 3. 2025 17:12, Mgr. Aleš Ryšavý
				
		Anotace
V originále
We revisit the results on admissible transformations between normal linear systems of second-order ordinary differential equations with an arbitrary number of dependent variables under several appropriate gauges of the arbitrary elements parameterizing these systems. For each class from the constructed chain of nested gauged classes of such systems, we single out its singular subclass, which appears to consist of systems being similar to the elementary (free particle) system whereas the regular subclass is the complement of the singular one. This allows us to exhaustively describe the equivalence groupoids of the above classes as well as of their singular and regular subclasses. Applying various algebraic techniques, we establish principal properties of Lie symmetries of the systems under consideration and outline ways for completely classifying these symmetries. In particular, we compute the sharp lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by systems from each of the above classes and subclasses. We also show how equivalence transformations and Lie symmetries can be used for reduction of order of such systems and their integration. As an illustrative example of using the theory developed, we solve the complete group classification problems for all these classes in the case of two dependent variables.