Detailed Information on Publication Record
2024
Minimality and distributional chaos in triangular maps
BALIBREA, Francisco and Lenka RUCKÁBasic information
Original name
Minimality and distributional chaos in triangular maps
Authors
BALIBREA, Francisco and Lenka RUCKÁ
Edition
Journal of Difference Equations and Applications, Abingdon, Taylor and Francis Ltd. 2024, 1023-6198
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
United Kingdom of Great Britain and Northern Ireland
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 1.100 in 2022
Organization unit
Mathematical Institute in Opava
UT WoS
001129458400001
Keywords in English
distributional chaos; Minimality; Sharkovsky classification; triangular maps
Tags
Tags
International impact, Reviewed
Změněno: 30/1/2025 11:39, Mgr. Aleš Ryšavý
Abstract
V originále
The result of this paper contributes to the classification of triangular maps of the square with zero topological entropy stated by A. N. Sharkovsky in the 1980s. The problem was if a triangular map of the square such that its any omega-limit set contains unique minimal set can be distributionally chaotic. So far such result was disproved only for the class of triangular maps non-decreasing on fibres [L. Paganoni, J. Smital, Strange distributionally chaotic triangular maps, Chaos Solitons Fractals 26(2) (2005), pp. 581-589]. In this paper, we solve the problem in negative for all triangular maps of the square, correcting the original result from Balibrea and Smital [Strong distributional chaos and minimal sets, Topology appl. 156 (2009), pp. 1673-1678].