J 2024

Minimality and distributional chaos in triangular maps

BALIBREA, Francisco and Lenka RUCKÁ

Basic information

Original name

Minimality and distributional chaos in triangular maps

Authors

BALIBREA, Francisco and Lenka RUCKÁ

Edition

Journal of Difference Equations and Applications, Abingdon, Taylor and Francis Ltd. 2024, 1023-6198

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United Kingdom of Great Britain and Northern Ireland

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 1.100 in 2022

Organization unit

Mathematical Institute in Opava

UT WoS

001129458400001

Keywords in English

distributional chaos; Minimality; Sharkovsky classification; triangular maps

Tags

Tags

International impact, Reviewed
Změněno: 30/1/2025 11:39, Mgr. Aleš Ryšavý

Abstract

V originále

The result of this paper contributes to the classification of triangular maps of the square with zero topological entropy stated by A. N. Sharkovsky in the 1980s. The problem was if a triangular map of the square such that its any omega-limit set contains unique minimal set can be distributionally chaotic. So far such result was disproved only for the class of triangular maps non-decreasing on fibres [L. Paganoni, J. Smital, Strange distributionally chaotic triangular maps, Chaos Solitons Fractals 26(2) (2005), pp. 581-589]. In this paper, we solve the problem in negative for all triangular maps of the square, correcting the original result from Balibrea and Smital [Strong distributional chaos and minimal sets, Topology appl. 156 (2009), pp. 1673-1678].