2024
			
	    
	
	
    M-harmonic Szegö Kernel on the Ball
BLASCHKE, Petr and Miroslav ENGLIŠBasic information
Original name
M-harmonic Szegö Kernel on the Ball
	Authors
BLASCHKE, Petr (203 Czech Republic, belonging to the institution) and Miroslav ENGLIŠ (203 Czech Republic, guarantor, belonging to the institution)
			Edition
 Singapore, The Bergman Kernel and Related Topics, Hayama Symposium on SCV XXIII, Kanagawa, Japan, July 2022, p. 105-120, 16 pp. 2024
			Publisher
Springer Singapore
		Other information
Language
English
		Type of outcome
Proceedings paper
		Field of Study
10101 Pure mathematics
		Country of publisher
Singapore
		Confidentiality degree
is not subject to a state or trade secret
		Publication form
printed version "print"
		RIV identification code
RIV/47813059:19610/24:A0000154
		Organization unit
Mathematical Institute in Opava
			ISBN
978-981-99-9505-9
		ISSN
UT WoS
001258800500002
		EID Scopus
2-s2.0-85189546767
		Keywords in English
Hypergeometric functions; Invariant Laplacian; M-harmonic function; Szegö kernel
		Tags
International impact, Reviewed
		Links
GA21-27941S, research and development project. 
			
				
				Changed: 5/3/2025 14:16, Mgr. Aleš Ryšavý
				
		Abstract
In the original language
We give a description of the boundary singularity of the Szegö kernel of M-harmonic functions, i.e. functions annihilated by the invariant Laplacian, on the unit ball of the complex n-space, in terms of the Gauss hypergeometric functions.