Detailed Information on Publication Record
2024
Black hole in a combined magnetic field: Ionized accretion disks in the jetlike and looplike configurations
KENZHEBAYEVA, Saltanat, Saken TOKTARBAY, Arman TURSUNOV and Martin KOLOŠBasic information
Original name
Black hole in a combined magnetic field: Ionized accretion disks in the jetlike and looplike configurations
Authors
KENZHEBAYEVA, Saltanat, Saken TOKTARBAY, Arman TURSUNOV (860 Uzbekistan, belonging to the institution) and Martin KOLOŠ (203 Czech Republic, belonging to the institution)
Edition
Physical Review D, 2024, 2470-0010
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10308 Astronomy
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 5.000 in 2022
Organization unit
Institute of physics in Opava
UT WoS
001196566600011
Keywords in English
Magnetic fields;Schwarzschild black hole;relativistic magnetohydrodynamical simulations;energy;spin;Blandford-Znajek splitmonopole magnetic fields
Tags
Tags
International impact, Reviewed
Links
GA23-07043S, research and development project.
Změněno: 4/2/2025 09:21, Mgr. Pavlína Jalůvková
Abstract
V originále
Magnetic fields surrounding black holes are responsible for various astrophysical phenomena related to accretion processes and relativistic jets. Depending on the source, the configuration of the field lines may differ significantly, affecting the trajectories of charged particles and the corresponding observables. Usually, the magnetic fields around black holes are modeled within a single source or current generating the field. However, magnetic fields can have more than a single origin, being a combination of different fields, such as, e.g., that of an accretion disk and external large-scale or Galactic ones. In this paper, we propose a combined magnetic field solution given by the superposition of the uniform and Blandford-Znajek splitmonopole magnetic fields in a strong gravity regime of the Schwarzschild black hole. We show that when the combined magnetic field components are aligned, the resulting field is of a paraboloidal jetlike shape. Such a configuration is supported by relativistic jet observations and is often utilized in general relativistic magnetohydrodynamical simulations. In the opposite orientation of the two field components, we observe looplike field structures magnetically connecting the black hole with an accretion disk and the magnetic null points, which can be related to the regions of magnetic reconnection. In the combined magnetic field configurations, we analyze the dynamics of charged particles, study their stability conditions, and find the locations of stable off -equatorial structures close to the symmetry axis. Finally, we consider an ionization of Keplerian accretion disk as a particular scenario of particle scattering. From the numerical experiments, we conclude that charged particles in the jetlike combination show a strong tendency to escape from the black hole, which is not observed in the case of individual fields. In contrast, the looplike combination supports accretion of charged particles into the black hole.