J 2024

Eight new 2+2 doubly eclipsing quadruple systems detected

ZASCHE, P., Z. HENZL, J. MERC, J. KARA, Hana KUČÁKOVÁ et. al.

Basic information

Original name

Eight new 2+2 doubly eclipsing quadruple systems detected

Authors

ZASCHE, P., Z. HENZL, J. MERC, J. KARA and Hana KUČÁKOVÁ (203 Czech Republic, belonging to the institution)

Edition

ASTRONOMY & ASTROPHYSICS, LES ULIS CEDEX A, EDP SCIENCES S A, 2024, 0004-6361

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10308 Astronomy

Country of publisher

France

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 6.500 in 2022

Organization unit

Institute of physics in Opava

UT WoS

001262731800005

Keywords in English

binaries: close;binaries: eclipsing;binaries: general;stars: fundamental parameters

Tags

Tags

International impact, Reviewed
Změněno: 4/2/2025 10:24, Mgr. Pavlína Jalůvková

Abstract

V originále

We studied eight new doubly eclipsing stellar systems. We found that they are all rare examples of quadruple systems of 2 + 2 architecture, where both inner pairs are eclipsing binaries. Until now, such a configuration had only been proven for dozens of systems on the whole sky. We enlarged this rare group of systems with four stars in the Small Magellanic Cloud (SMC) galaxy and four brighter stars on the northern sky. These analysed systems are the following: OGLE SMC-ECL-2339 (both eclipsing periods of 0.72884 days and 3.39576 days; mutual orbital period of 5.95 years); OGLE SMC-ECL-3075 (1.35890 d, 2.41587 d, 9.75 yr); OGLE SMC-ECL-4756 (0.91773 d, 2.06047 d, 4.34 yr); OGLE SMC-ECL-6093 (0.90193 d, 2.03033 d, 31.2 yr); GSC 01949-01700 (0.24058 d, 0.75834 d, 21.7 yr); ZTF J171602.61+273606.5 (0.36001 d, 4.51545 d, 19.5 yr); WISE J210935.8+390501 (0.33228 d, 3.51575 d, 1.9 yr); and V597 And (0.46770 d, 0.35250, 20.4 yr). These systems constitute a rare selection of W UMa stars among the doubly eclipsing quadruples. For all of the systems, new dedicated observations were obtained as well. V597 And is definitely the most interesting system for several reasons: (1) the system is the brightest in our sample; (2) it is a rare quintuple (2 + 2) + 1 system; and (3) it is also closest to the Sun. It yielded the predicted angular separation of the two components of 57 mas, which is probably within the detection limits for modern, high-angular-resolution techniques.