Detailed Information on Publication Record
2024
Circular motion and collisions of charged spinning particles near Kerr Newman black holes
DAVLATALIEV, Akbar, Javlon RAYIMBAEV, Farukh ABDULKHAMIDOV, Zdeněk STUCHLÍK, Ahmadjon ABDUJABBAROV et. al.Basic information
Original name
Circular motion and collisions of charged spinning particles near Kerr Newman black holes
Authors
DAVLATALIEV, Akbar, Javlon RAYIMBAEV (860 Uzbekistan), Farukh ABDULKHAMIDOV (860 Uzbekistan, belonging to the institution), Zdeněk STUCHLÍK (203 Czech Republic, belonging to the institution) and Ahmadjon ABDUJABBAROV (860 Uzbekistan)
Edition
Physics of the Dark Universe, 2024, 2212-6864
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10308 Astronomy
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 5.500 in 2022
Organization unit
Institute of physics in Opava
UT WoS
001284466600001
Keywords in English
Spinning particles;MPD equations;Superluminal bounds;Particle collisions;Kerr-Newmann black holes
Tags
Tags
International impact, Reviewed
Links
GA23-07043S, research and development project.
Změněno: 4/2/2025 12:17, Mgr. Pavlína Jalůvková
Abstract
V originále
We investigate the dynamics of spinning particles with an electric charge orbiting electrically charged Kerr-Newman black holes. First, we derive the equations of motion for the test particles using the MathissonPapapetrou-Dixon (MPD) equations, taking into account electromagnetic interaction and the interaction between the particle spin and the spacetime curvature known as the Lorentz coupling term in the MPD equation. We analyze the related effective potential in various scenarios of particle spin, angular momentum, and black hole spin orientation. In addition, we provide graphical analyses of the radius of innermost stable circular orbits (ISCOs) of the particles, their angular momentum, and energy at ISCOs and superluminal bounds. The ISCOs for positive and negatively charged particles are almost the same. The combined effects of the black hole and particle spins enhance the Coulomb interaction effect on the ISCO radius. The ISCO energy and angular momentum decrease with the increase in particle spin. In the Reissner-Nordstr & ouml;m (RN) black hole limit, the decreasing rate is faster at positive values of the particle spin, and the spin limit changes in the Kerr-Newman black hole case. Finally, we study collisions between spinning charged particles near Kerr- Newman black holes. The critical values of the angular momentum of spinning charged particles are explored, and the particles can collide in various cases of particle and black hole spin, as well as the particle angular momentum. We also analyze electromagnetic and spin effects on the center-of-mass energy of the colliding particles.