2025
Farkas’ Lemma and Linear Programming in the Infinite Case
BARTL, DavidZákladní údaje
Originální název
Farkas’ Lemma and Linear Programming in the Infinite Case
Autoři
Vydání
The 36th Hungarian Operations Research Conference. June 4 to June 6, 2025. Szeged, Hungary, 2025
Další údaje
Jazyk
angličtina
Typ výsledku
Prezentace na konferencích
Obor
10100 1.1 Mathematics
Stát vydavatele
Maďarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Organizační jednotka
Obchodně podnikatelská fakulta v Karviné
Klíčová slova anglicky
Infinite and semi-infinite linear programming; core and balancedness of infinite TU-games
Příznaky
Mezinárodní význam
Změněno: 20. 11. 2025 11:19, doc. RNDr. David Bartl, Ph.D.
Anotace
V originále
We consider the linear programming problem in the setting of a general vector space over a linearly ordered (commutative or skew) field. The feasible set is constrained by a system of linear inequalities and the objective function is a linear mapping into a linearly ordered vector space over the same linearly ordered field. In this algebraic setting, we recall known results: Farkas’ Lemma, Gale’s Theorem of the alternative, and the Duality Theorem for linear programming with a finite number of linear constraints. Nonetheless, our purpose is to study the infinite case; that is, infinite systems of linear inequalities in an infinite-dimensional space, by using a purely algebraic approach. We formulate and present a new infinite variant of Farkas’ Lemma along with an infinite variant of Gale’s Theorem of the alternative. Moreover, we formulate the problem of an infinite linear programming, its dual problem, and the Duality Theorem for the problems. Finally, we consider an application to the problems of semi-infinite linear programming and discuss balancedness condition for the non-emptiness of the core of a cooperative TU-game with an infinite number of players.