2025
A survey on learning models of spiking neural membrane systems
SOSÍK, Petr; Prithwineel PAUL a Lucie CIENCIALOVÁZákladní údaje
Originální název
A survey on learning models of spiking neural membrane systems
Autoři
SOSÍK, Petr; Prithwineel PAUL a Lucie CIENCIALOVÁ
Vydání
Natural Computing, Dordrecht, Springer, 2025, 1567-7818
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.600 v roce 2024
Organizační jednotka
Filozoficko-přírodovědecká fakulta v Opavě
UT WoS
001524962100001
EID Scopus
2-s2.0-105010109673
Klíčová slova anglicky
Artificial neural network; Deep learning; Machine learning; Spiking neural network; Spiking neural P system
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 12. 2025 08:54, Mgr. Kamil Matula, Ph.D.
Anotace
V originále
Spiking neural P systems (SN P systems) are a mathematical model of neural networks, abstracting the way biological neurons communicate with spikes, developed within the framework of the membrane computing theory. Recently, driven by the boom of learning neural models, SN P systems have become a rapidly emerging research front. Consequently, many different variants of the learning models of SN P system prevail among the new research results. Although large proprietary deep learning models are still based on the continuous neural network paradigm, spiking neurons are attractive because of their low-energy demands. The purpose of this paper is to provide an up-to-date overview of learning paradigms and techniques for SN P systems. After a brief introduction of the structure and function of SN P systems, we summarise recent approaches to learning and adaptation in SN P systems, including Hebbian learning, Widrow-Hoff algorithm, fuzzy approaches, nonlinear SN P systems, gated and long short-term memory inspired SN P systems, convolutional SN P systems, and more.