J 2025

A survey on learning models of spiking neural membrane systems

SOSÍK, Petr; Prithwineel PAUL a Lucie CIENCIALOVÁ

Základní údaje

Originální název

A survey on learning models of spiking neural membrane systems

Autoři

SOSÍK, Petr; Prithwineel PAUL a Lucie CIENCIALOVÁ

Vydání

Natural Computing, Dordrecht, Springer, 2025, 1567-7818

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 1.600 v roce 2024

Organizační jednotka

Filozoficko-přírodovědecká fakulta v Opavě

UT WoS

001524962100001

EID Scopus

2-s2.0-105010109673

Klíčová slova anglicky

Artificial neural network; Deep learning; Machine learning; Spiking neural network; Spiking neural P system

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 18. 12. 2025 08:54, Mgr. Kamil Matula, Ph.D.

Anotace

V originále

Spiking neural P systems (SN P systems) are a mathematical model of neural networks, abstracting the way biological neurons communicate with spikes, developed within the framework of the membrane computing theory. Recently, driven by the boom of learning neural models, SN P systems have become a rapidly emerging research front. Consequently, many different variants of the learning models of SN P system prevail among the new research results. Although large proprietary deep learning models are still based on the continuous neural network paradigm, spiking neurons are attractive because of their low-energy demands. The purpose of this paper is to provide an up-to-date overview of learning paradigms and techniques for SN P systems. After a brief introduction of the structure and function of SN P systems, we summarise recent approaches to learning and adaptation in SN P systems, including Hebbian learning, Widrow-Hoff algorithm, fuzzy approaches, nonlinear SN P systems, gated and long short-term memory inspired SN P systems, convolutional SN P systems, and more.