2025
Dark matter halos modeled by polytropic spheres influenced by the relict cosmological constant and trapping polytropes forming supermassive black holes
STUCHLÍK, Zdeněk; Jan NOVOTNÝ a Jan HLADÍKZákladní údaje
Originální název
Dark matter halos modeled by polytropic spheres influenced by the relict cosmological constant and trapping polytropes forming supermassive black holes
Autoři
Vydání
ASTRONOMY & ASTROPHYSICS, LES ULIS CEDEX A, EDP SCIENCES S A, 2025, 0004-6361
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Francie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.800 v roce 2024
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001582547500001
Klíčová slova anglicky
stars: kinematics and dynamics;galaxies: halos;dark matter
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 1. 2026 11:42, Mgr. Pavlína Jalůvková
Anotace
V originále
Aims. We study dark matter halos modeled by general relativistic polytropic spheres in spacetimes with the repulsive cosmological constant representing vacuum energy density, governed by a polytropic index, n, and a relativistic (cosmological) parameter, sigma (lambda), determining the ratio of central pressure (vacuum energy density) and central energy density of the fluid. Methods. To give mapping of the polytrope parameters for matching the extension and mass of large dark matter halos, we study the properties of the polytropic spheres and introduce an effective potential of the geodesic motion in their internal spacetime. Circular geodesics enable us to find the limits of the trapping polytropes with central regions containing trapped null geodesics; supermassive black holes can be formed due to the instability of the central region against gravitational perturbations. The stability of the polytropic spheres relative to radial perturbations is determined. We match the extension and mass of the polytropes to the ones of dark matter halos related to large galaxies or galaxy clusters, with an extension of 100 < & ell;/kpc < 5000 and gravitational mass of 10(12) < M/M-circle dot < 5 x 10(15). The velocity radial profiles of circular geodesics in the polytrope spacetimes are numerically compared to the observed velocity profiles. Results. The observed velocity profiles simulated by the phenomenological dark matter halo density profiles can also be well matched by the velocity profiles of the exact polytrope spacetimes. The matching is made possible by the nonrelativistic polytropes for each value of n, with a relativistic parameter of sigma <= 10(-4) and a very low central energy density. Surprisingly, the matching works for "spread" relativistic polytropes with n > 3.3 and sigma >= 0.1 when the central density can be much larger. The trapping polytropes forming supermassive black holes must have n > 3.8 and sigma > 0.667. We thus explain the mass and structure of large galaxies and galaxy clusters, their extension limited by the cosmic repulsion, and the existence of black holes with mass M > 10(10) M-circle dot in very large galaxies; we suggest black holes with M similar to 10(12) M-circle dot in large galaxy clusters.