2025
Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions
PUGLIESE, Daniela; Zdeněk STUCHLÍK a Vladimír KARASZákladní údaje
Originální název
Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions
Autoři
PUGLIESE, Daniela; Zdeněk STUCHLÍK a Vladimír KARAS
Vydání
Physics of the Dark Universe, Netherlands, 2025, 2212-6864
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 6.400 v roce 2024
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001452980600001
EID Scopus
2-s2.0-105001102752
Klíčová slova anglicky
black holes;accretion disks;accretion;hydrodynamics;galaxies active
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 1. 2026 10:30, Mgr. Pavlína Jalůvková
Anotace
V originále
We investigate the evolution of a set of viscous rings, solving a diffusion-like evolution equation in the (Keplerian disk) Newtonian regime. The Lynden-Bell and Pringle approach for a single disk regime is applied to a disk with a ring profile mimicking a set of orbiting viscous rings. We discuss the time evolution of the disk, adopting different initial wavy (ringed) density profiles. Four different stages of the ring-cluster evolution are distinguished. In the second part of this analysis, we also explore the general relativistic framework by investigating the time evolution of composed systems of general relativistic co-rotating and counter-rotating equatorial disks orbiting a central Kerr black hole for faster spinning and slowly spinning black holes. In the sideline of this analysis, we consider a modified viscosity prescription mimicking an effective viscosity in the general relativistic ring interspace acting in the early phases of the rings' evolutions, exploring the double system dynamics. Each ring of the separate sequence spreads inside the cluster modifying its inner structure following the rings merging. As the original ringed structure disappears, a single disk appears. The final configuration has a (well-defined) density peak, and its evolution turns in the final stages are dominated by its activity at the inner edge.