J 2025

Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions

PUGLIESE, Daniela; Zdeněk STUCHLÍK a Vladimír KARAS

Základní údaje

Originální název

Keplerian Ringed-Disk Viscous-Diffusive Evolution and Combined Independent General Relativistic Evolutions

Autoři

Vydání

Physics of the Dark Universe, Netherlands, 2025, 2212-6864

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 6.400 v roce 2024

Organizační jednotka

Fyzikální ústav v Opavě

UT WoS

001452980600001

EID Scopus

2-s2.0-105001102752

Klíčová slova anglicky

black holes;accretion disks;accretion;hydrodynamics;galaxies active

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 20. 1. 2026 10:30, Mgr. Pavlína Jalůvková

Anotace

V originále

We investigate the evolution of a set of viscous rings, solving a diffusion-like evolution equation in the (Keplerian disk) Newtonian regime. The Lynden-Bell and Pringle approach for a single disk regime is applied to a disk with a ring profile mimicking a set of orbiting viscous rings. We discuss the time evolution of the disk, adopting different initial wavy (ringed) density profiles. Four different stages of the ring-cluster evolution are distinguished. In the second part of this analysis, we also explore the general relativistic framework by investigating the time evolution of composed systems of general relativistic co-rotating and counter-rotating equatorial disks orbiting a central Kerr black hole for faster spinning and slowly spinning black holes. In the sideline of this analysis, we consider a modified viscosity prescription mimicking an effective viscosity in the general relativistic ring interspace acting in the early phases of the rings' evolutions, exploring the double system dynamics. Each ring of the separate sequence spreads inside the cluster modifying its inner structure following the rings merging. As the original ringed structure disappears, a single disk appears. The final configuration has a (well-defined) density peak, and its evolution turns in the final stages are dominated by its activity at the inner edge.