2025
Energy Flow and Radiation Efficiency in Radiative GRMHD Simulations of Neutron Star Ultraluminous X-Ray Sources
KAYANIKHOO, Fatemeh; Wlodek KLUZNIAK; David ABARCA a Miljenko ČEMELJIĆZákladní údaje
Originální název
Energy Flow and Radiation Efficiency in Radiative GRMHD Simulations of Neutron Star Ultraluminous X-Ray Sources
Autoři
KAYANIKHOO, Fatemeh; Wlodek KLUZNIAK; David ABARCA a Miljenko ČEMELJIĆ
Vydání
Astrophysical Journal, GB - Spojené království Velké Británie a, 2025, 0004-637X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.400 v roce 2024
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001629202700001
Klíčová slova anglicky
hole accreation discs; nustar J095551+6940.8; Thomson scattering; pulsing ulxs; black holes; pulsar; luminosity; emission; magnetar;swift
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 1. 2026 11:30, Mgr. Pavlína Jalůvková
Anotace
V originále
We investigate numerically the energy flow and radiation efficiency of accreting neutron stars as potential ultraluminous X-ray sources (ULXs). We perform 10 simulations in radiative general relativistic magnetohydrodynamics, exploring six different magnetic dipole strengths ranging from 10 to 100 GigaGauss, along with three accretion rates, 100, 300, and 1000 Eddington luminosity units. Our results show that the energy efficiency in simulations with a strong magnetic dipole of 100 GigaGauss is approximately half that of simulations with a magnetic dipole an order of magnitude weaker. Consequently, radiation efficiency is lower in simulations with stronger magnetic dipoles. We also demonstrate that outflow power increases as the magnetic dipole weakens, resulting in stronger beaming in simulations with weaker magnetic dipoles. As a result of beaming, simulations with magnetic dipole strengths below 30 GigaGauss exhibit apparent luminosities consistent with those observed in ULXs. As for the accretion rates, we find that higher accretion rates lead to more powerful outflows, higher kinetic efficiency, and lower radiation efficiency compared to those of lower accretion rate simulations.