2025
Quasinormal ringing and shadows of black holes and wormholes in dark matter-inspired Weyl gravity
KONOPLYA, Roman; Andrii KHRABUSTOVSKYI; Jan KRIZ a Alexander ZHIDENKOZákladní údaje
Originální název
Quasinormal ringing and shadows of black holes and wormholes in dark matter-inspired Weyl gravity
Autoři
KONOPLYA, Roman; Andrii KHRABUSTOVSKYI; Jan KRIZ a Alexander ZHIDENKO
Vydání
Journal of Cosmology and Astroparticle Physics, GB - Spojené království Velké Británie a, 2025, 1475-7516
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.900 v roce 2024
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
001476629300005
EID Scopus
2-s2.0-105003382011
Klíčová slova anglicky
Exact solutions;black holes and black hole thermodynamics in GR and beyond;Gravitational waves in GR and beyond: theorymodified gravity;Wormholes
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 1. 2026 11:14, Mgr. Pavlína Jalůvková
Anotace
V originále
Weyl gravity naturally generates effective dark matter and cosmological constant terms as integration constants, eliminating the need to explicitly introduce them into the theory. Additionally, the framework permits three intriguing solutions for compact objects: an asymptotically de Sitter Schwarzschild-like black hole described by the Mannheim-Kazanas solution, a non-Schwarzschild black hole, and a traversable wormhole that exists without exotic matter. In this work, we investigate the quasinormal spectra of all three solutions. We demonstrate that when the mass of the black hole corresponding to the MannheimKazanas solution approaches zero, the perturbation equations yield an exact solution expressible through hypergeometric functions. The quasinormal modes of black holes in Weyl gravity can be classified into three distinct branches: Schwarzschild-like modes modified by effective dark matter and cosmological terms, and modes associated with empty spacetime (de Sitter and dark matter branches), which are further influenced by the black hole mass. Previous studies have shown that the dark matter term induces a secondary stage of quasinormal ringing following the initial Schwarzschild phase. Here, we compute the frequencies using convergent methods and elucidate how this unique time-domain behavior translates into the frequency domain. Furthermore, we demonstrate that the non-Schwarzschild black hole can be distinguished from both the Schwarzschild-like solution and the wormhole through their distinct quasinormal spectra. We also compute shadow radii for black holes and wormholes within Weyl gravity, revealing that wormholes with large throat radii can produce significantly smaller shadows compared to black holes of equivalent mass.