Filter publications

    2024

    1. CHLADNÁ, Zuzana, Jana KOPFOVÁ, Dmitrii RACHINSKII and Pavel ŠTĚPÁNEK. Effect of Quarantine Strategies in a Compartmental Model with Asymptomatic Groups. Journal of Dynamics and Differential Equations. New York (USA): Springer, 2024, vol. 36, Suppl 1, p. 199-222. ISSN 1040-7294. Available from: https://dx.doi.org/10.1007/s10884-021-10059-5.
    2. CARUSO, Noe Angelo, Alessandro MICHELANGELI and Andrea OTTOLINI. On a comparison between absolute and relative self-adjoint extension schemes. Quaestiones Mathematicae. Oxon (England): Taylor & Francis LTD, 2024, vol. 47, No 1, 19 pp. ISSN 1607-3606. Available from: https://dx.doi.org/10.2989/16073606.2023.2209282.

    2023

    1. DEB, Prahllad and Somnath HAZRA. A family of homogeneous operators in the Cowen-Douglas class over the poly-disc. Studia Mathematica. Warsaw, Poland: IMPAN - Institute of Mathematics. Polish Academy of Sciences, 2023, vol. 271, No 1, p. 65-84. ISSN 0039-3223. Available from: https://dx.doi.org/10.4064/sm220630-10-1.
    2. CARUSO, Noe Angelo. A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space. Complex Analysis and Operator Theory. Basel, Switzerland: Springer Basel AG, 2023, vol. 17, No 7, p. "109-1"-"109-12", 12 pp. ISSN 1661-8254. Available from: https://dx.doi.org/10.1007/s11785-023-01413-0.
    3. BLASCHKE, Petr and František ŠTAMPACH. Asymptotic root distribution of Charlier polynomials with large negative parameter. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2023, vol. 524, No 2, p. "127086-1"-"127086-29", 29 pp. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2023.127086.
    4. RÝŽOVÁ, Veronika. Birkhoff centre and backward limit points. Topology and its Applications. Amsterdam: Elsevier B.V., 2023, vol. 324, february, p. "108338-1"-"108338-7", 7 pp. ISSN 0166-8641. Available from: https://dx.doi.org/10.1016/j.topol.2022.108338.
    5. HOLBA, Pavel. Complete classification of local conservation laws for generalized Cahn-Hilliard-Kuramoto-Sivashinsky equation. Studies in Applied Mathematics. Hoboken (USA): WILEY, 2023, vol. 151, No 1, p. 171-182. ISSN 0022-2526. Available from: https://dx.doi.org/10.1111/sapm.12576.
    6. KOPFOVÁ, Jana and Vincenzo RECUPERO. Continuity of the non-convex play operator in the space of rectifiable curves. Applications of Mathematics. Springer Science and Business Media Deutschland GmbH, 2023, vol. 68, No 6, p. 727-750. ISSN 0862-7940. Available from: https://dx.doi.org/10.21136/AM.2023.0257-22.
    7. FORYŚ-KRAWIEC, Magdalena, Jana HANTÁKOVÁ, Jiří KUPKA, Piotr OPROCHA and Samuel Joshua ROTH. Dendrites and measures with discrete spectrum. Ergodic Theory and Dynamical Systems. New York: Cambridge University Press, 2023, vol. 43, No 2, p. 545-555. ISSN 0143-3857. Available from: https://dx.doi.org/10.1017/etds.2021.157.
    8. KOVAL, Serhii D, Alexander BIHLO and Roman POPOVYCH. Extended symmetry analysis of remarkable (1+2)-dimensional Fokker-Planck equation. European Journal of Applied Mathematics. New York (USA): Cambridge University Press, 2023, vol. 34, No 5, p. 1067-1098. ISSN 0956-7925. Available from: https://dx.doi.org/10.1017/S0956792523000074.
    9. PETRLOVÁ, Katarína, Jozef KUBÁS, Michal BALLAY and Boris KOLLÁR. Implementation of Practical Aids in the Teaching Process at University within the Subject of Civil Protection. Online. In Luis Gómez Chova, Chelo González Martínez, Joanna Lees. ICERI2023 Proceedings. Valencia, Spain: IATED Academy, 2023, p. 7963-7973. ISBN 978-84-09-55942-8. Available from: https://dx.doi.org/10.21125/iceri.2023.2028.
    10. CARUSO, Noe Angelo and Alessandro MICHELANGELI. Krylov solvability under perturbations of abstract inverse linear problems. Journal of Applied Analysis. Berlin (Germany): Walter de Gruyter GMBH, 2023, vol. 29, No 1, p. 3-29. ISSN 1425-6908. Available from: https://dx.doi.org/10.1515/jaa-2022-2004.
    11. GHOSH, Abhishek and Gargi GHOSH. LP regularity of Szegö projections on quotient domains. New York Journal of Mathematics. Albany, USA: University at Albany, 2023, vol. 29, july, p. 911-930. ISSN 1076-9803.
    12. MARVAN, Michal. Matching van Stockum dust to Papapetrou vacuum. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2023, vol. 190, august, p. "104878-1"-"104878-10", 10 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2023.104878.
    13. LI, Risong and Michal MÁLEK. N-Convergence and Chaotic Properties of Non-autonomous Discrete Systems. Qualitative Theory of Dynamical Systems. Basel, Switzerland: Springer International Publishing, 2023, vol. 22, No 2, p. "78-1"-"78-17", 17 pp. ISSN 1575-5460. Available from: https://dx.doi.org/10.1007/s12346-023-00779-y.
    14. VOJČÁK, Petr. Non-Abelian covering and new recursion operators for the 4D Martínez Alonso-Shabat equation. Communications in Nonlinear Science and Numerical Simulation. Amsterdam: Elsevier B.V., 2023, vol. 118, april, p. "107007-1"-"107007-11", 11 pp. ISSN 1007-5704. Available from: https://dx.doi.org/10.1016/j.cnsns.2022.107007.
    15. TESARČÍK, Jan and Vojtěch PRAVEC. On distributional spectrum of piecewise monotonic maps. Aequationes Mathematicae. Basel: Birkhauser Verlag AG, 2023, vol. 97, No 1, p. 133-145. ISSN 0001-9054. Available from: https://dx.doi.org/10.1007/s00010-022-00913-2.
    16. BLASCHKE, Petr. Pedal Coordinates and Orbits Inside Magnetic Dipole Field. In Piotr Kielanowski, Alina Dobrogowska, Gerald A. Goldin, Tomasz Goliński. Geometric Methods in Physics XXXIX, Trends in Mathematics. Cham, Switzerland: Birkhäuser Cham, 2023, p. 147-158. ISBN 978-3-031-30286-2. Available from: https://dx.doi.org/10.1007/978-3-031-30284-8_14.
    17. KOVAL, Serhii D and Roman POPOVYCH. Point and generalized symmetries of the heat equation revisited. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2023, vol. 527, No 2, p. "127430-1"-"127430-21", 21 pp. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2023.127430.
    18. MLÍCHOVÁ, Michaela. Recollections about Jaroslav Smítal. Real Analysis Exchange. Lansing, USA: Michigan State University Press, 2023, vol. 48, No 1, p. 1-18. ISSN 0147-1937. Available from: https://dx.doi.org/10.14321/realanalexch.48.1.1659420745.
    19. MARKOVÁ, Iveta, Jozef KUBÁS, Zuzana ŠTOFKOVÁ and Katarína PETRLOVÁ. Reducing the negative impact of accidents associated with the release of dangerous substances to environment. Frontiers in Public Health. Lausanne, Switzerland: Frontiers Media SA, 2023, vol. 11, november, p. "1270427-1"-"1270427-12", 12 pp. ISSN 2296-2565. Available from: https://dx.doi.org/10.3389/fpubh.2023.1270427.
    20. PETRLOVÁ, Katarína, Jozef KUBÁS, Alexander KELÍŠEK and Michal BALLAY. The Use of Virtual Reality for the Education of Crisis Managers in Municipalities. Online. In Luis Gómez Chova, Chelo González Martínez, Joanna Lees. INTED2023 Proceedings, 17th International Technology, Education and Development Conference. Valencia, Spain: IATED Academy, 2023, p. 8014-8020. ISBN 978-84-09-49026-4. Available from: https://dx.doi.org/10.21125/inted.2023.2181.
    21. GHOSH, Gargi and E K NARAYANAN. Toeplitz operators on the weighted Bergman spaces of quotient domains. Bulletin des Sciences Mathématiques. Amsterdam, Netherlands: Elsevier, 2023, vol. 188, november, p. "103340-1"-"103340-29", 29 pp. ISSN 0007-4497. Available from: https://dx.doi.org/10.1016/j.bulsci.2023.103340.
    22. HASÍK, Karel, Jana KOPFOVÁ, Petra NÁBĚLKOVÁ, Olena TROFYMCHUK and Sergei TROFIMCHUK. Two reasons for the appearance of pushed wavefronts in the Belousov-Zhabotinsky system with spatiotemporal interaction. Journal of Differential Equations. San DIego: Academic Press Inc. Elsevier Science, 2023, vol. 376, december, p. 102-125. ISSN 0022-0396. Available from: https://dx.doi.org/10.1016/j.jde.2023.08.013.
    23. LOVEČEK, Tomáš, Ladislav MARIŠ and Katarína PETRLOVÁ. Use Case of Water Reservoir Protection as a Critical Infrastructure Element in Slovakia Using a Quantitative Approach. Water. Basel, Switzerland: MDPI, 2023, vol. 15, No 15, p. "2818-1"-"2818-20", 20 pp. ISSN 2073-4441. Available from: https://dx.doi.org/10.3390/w15152818.

    2022

    1. JACKSON, Stephen, Bill MANCE and Samuel Joshua ROTH. A non-Borel special alpha-limit set in the square. Ergodic Theory and Dynamical Systems. New York: Cambridge University Press, 2022, vol. 42, No 8, p. 2550-2560. ISSN 0143-3857. Available from: https://dx.doi.org/10.1017/etds.2021.68.
    2. PETRLOVÁ, Katarína, Katarína KAMPOVÁ, Tomáš LOVEČEK and Jakub ĎURICA. Biometric Identity Verification as Part of Physical Protection Systems. Online. In 2022 IEEE International Carnahan Conference on Security Technology (ICCST). New York (USA): Institute of Electrical and Electronics Engineers Inc., 2022, p. 1-7. ISBN 978-1-6654-9364-2. Available from: https://dx.doi.org/10.1109/ICCST52959.2022.9896544.
    3. STOLÍNOVÁ, Adéla, Katarína PETRLOVÁ, Maria POLORECKÁ, Jozef KUBÁS and Katarína BUGANOVÁ. Citizens’ Preparedness to Deal with Emergencies as an Important Component of Civil Protection. International Journal of Environmental Research and Public Health. Basel, Switzerland: Multidisciplinary Digital Publishing Institute (MDPI), 2022, vol. 19, No 2, p. "830-1"-"830-18", 18 pp. ISSN 1661-7827. Available from: https://dx.doi.org/10.3390/ijerph19020830.
    4. PETRLOVÁ, Katarína, Katarína KAMPOVÁ and Katarína MÄKKÁ. Economic Evaluation of Cost and Benefits of Implementing Monitoring and Tracking System of Persons in Medical Facilitates. Online. In 2022 IEEE International Carnahan Conference on Security Technology (ICCST). New York (USA): Institute of Electrical and Electronics Engineers Inc., 2022, p. 1-7. ISBN 978-1-6654-9364-2. Available from: https://dx.doi.org/10.1109/ICCST52959.2022.9896566.
    5. DEB, Prahllad and Somnath HAZRA. Homogeneous Hermitian holomorphic vector bundles and operators in the Cowen-Douglas class over the poly-disc. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2022, vol. 510, No 2, p. "126031-1"-"126031-32", 32 pp. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2022.126031.
    6. BALIBREA, Francisco and Lenka RUCKÁ. Local Distributional Chaos. Qualitative Theory of Dynamical Systems. Basel, Switzerland: Springer Basel AG, 2022, vol. 21, No 4, p. "130-1"-"130-10", 10 pp. ISSN 1575-5460. Available from: https://dx.doi.org/10.1007/s12346-022-00661-3.
    7. OPANASENKO, Stanislav and Roman POPOVYCH. Mapping method of group classification. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2022, vol. 513, No 2, p. "126209-1"-"126209-43", 43 pp. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2022.126209.
    8. NÁBĚLKOVÁ, Petra, Jana KOPFOVÁ and Pavel KREJČÍ. MURPHYS 2022 Interdisciplinary Conference on Multiple Scale Systems, Systems with Hysteresis. 2022.
    9. HANTÁKOVÁ, Jana. On long-term behaviour of trajectories in discrete dynamical systems. 2022.
    10. FORYS-KRAWIEC, Magdalena, Jana HANTÁKOVÁ and Piotr OPROCHA. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems. Springfield: American Institute of Mathematical Sciences, 2022, vol. 42, No 3, p. 1435-1463. ISSN 1078-0947. Available from: https://dx.doi.org/10.3934/dcds.2021159.
    11. BLASCHKE, Petr, Filip BLASCHKE and Martin BLASCHKE. Pedal coordinates and free double linkage. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2022, vol. 171, january, p. "104397-1"-"104397-19", 19 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2021.104397.
    12. BLASCHKE, Petr. Pedal coordinates, solar sail orbits, Dipole drive and other force problems. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2022, vol. 506, No 1, p. "125537-1"-"125537-28", 28 pp. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2021.125537.
    13. DIRBÁK, Matúš. První kohomologické grupy minimálních toků (First cohomology groups of minimal flows). 2022.
    14. SERGYEYEV, Artur. Recursion Operators for Multidimensional Integrable PDEs. Acta Applicandae Mathematicae. Dordrecht: Springer, 2022, vol. 181, No 1, p. "10-1"-"10-12", 12 pp. ISSN 0167-8019. Available from: https://dx.doi.org/10.1007/s10440-022-00524-8.
    15. HANTÁKOVÁ, Jana, Samuel Joshua ROTH and Lubomír SNOHA. Spaces where all closed sets are α-limit sets. Topology and its Applications. Amsterdam: Elsevier B.V., 2022, vol. 310, april, p. "108035-1"-"108035-16", 16 pp. ISSN 0166-8641. Available from: https://dx.doi.org/10.1016/j.topol.2022.108035.
    16. VAŠÍČEK, Jakub. Symmetry nonintegrability for extended K(m, n, p) equation. Journal of Mathematical Chemistry. New York: Springer, 2022, vol. 60, No 2, p. 417-422. ISSN 0259-9791. Available from: https://dx.doi.org/10.1007/s10910-021-01312-9.
    17. VAŠÍČEK, Jakub and Raffaele VITOLO. WDVV equations: symbolic computations of Hamiltonian operators. Applicable Algebra in Engineering Communication and Computing. New York: Springer, 2022, vol. 33, No 6, p. 915-934. ISSN 0938-1279. Available from: https://dx.doi.org/10.1007/s00200-022-00565-4.

    2021

    1. LEITE FREIRE, Igor. A look on some results about Camassa–Holm type equations. Communications in Mathematics. Warsaw, Poland: Walter de Gruyter, 2021, vol. 29, No 1, p. 115-130. ISSN 1804-1388. Available from: https://dx.doi.org/10.2478/cm-2021-0006.
    2. PETRLOVÁ, Katarína, Katarína MÄKKÁ, Katarína KAMPOVÁ and Tomáš LOVEČEK. An environmental risk assessment of filling stations using the principles of security management. A case study in the Slovak Republic. Sustainability. Basel: MDPI, 2021, vol. 13, No 22, p. "12452-1"-"12452-15", 15 pp. ISSN 2071-1050. Available from: https://dx.doi.org/10.3390/su132212452.
    3. SERGYEYEV, Artur, Maciej BŁASZAK and Krzysztof MARCINIAK. Deforming lie algebras to frobenius integrable nonautonomous hamiltonian systems. Reports on Mathematical Physics. Oxford (GB): Elsevier Ltd., 2021, vol. 87, No 2, p. 249-263. ISSN 0034-4877. Available from: https://dx.doi.org/10.1016/S0034-4877(21)00028-8.
    4. KOPFOVÁ, Jana, Petra NÁBĚLKOVÁ, Dmitrii RACHINSKII and Samiha C. ROUF. Dynamics of SIR model with vaccination and heterogeneous behavioral response of individuals modeled by the Preisach operator. Journal of Mathematical Biology. Heidelberg (Germany): SPRINGER HEIDELBERG, 2021, vol. 83, No 2, p. "11-1"-"11-34", 34 pp. ISSN 0303-6812. Available from: https://dx.doi.org/10.1007/s00285-021-01629-8.
    5. RODRIGUES, Ana, Samuel Joshua ROTH and Zuzana ROTH. Fair measures for countable-to-one maps. Stochastics and Dynamics. Singapore: World Scientific Publishing Co. Pte Ltd, 2021, vol. 21, No 2, p. "2150008-1"-"2150008-29", 29 pp. ISSN 0219-4937. Available from: https://dx.doi.org/10.1142/S0219493721500088.
    6. BARAN, Hynek. Infinitely many commuting nonlocal symmetries for modified Martínez Alonso-Shabat equation. Communications in Nonlinear Science and Numerical Simulation. Amsterdam: Elsevier B.V., 2021, vol. 96, may, p. "105692-1"-"105692-4", 4 pp. ISSN 1007-5704. Available from: https://dx.doi.org/10.1016/j.cnsns.2021.105692.
    7. BARAN, Hynek. Integrabilita a geometrie (Integrability and Geometry). 2021.
    8. HOLBA, Pavel. Nonexistence of local conservation laws for generalized Swift-Hohenberg equation. Journal of Mathematical Chemistry. New York: Springer, 2021, vol. 59, No 6, p. 1474-1478. ISSN 0259-9791. Available from: https://dx.doi.org/10.1007/s10910-021-01249-z.
    9. HANTÁKOVÁ, Jana and Samuel Joshua ROTH. On backward attractors of interval maps. Nonlinearity. Bristol (GB): IOP Publishing Ltd, 2021, vol. 34, No 11, p. 7415-7445. ISSN 0951-7715. Available from: https://dx.doi.org/10.1088/1361-6544/ac23b6.
    10. HASÍK, Karel, Jana KOPFOVÁ, Petra NÁBĚLKOVÁ and Sergei TROFIMCHUK. On pushed wavefronts of monostable equation with unimodal delayed reaction. Discrete and Continuous Dynamical Systems - Series A. Springfield: American Institute of Mathematical Sciences, 2021, vol. 41, No 12, p. 5979-6000. ISSN 1078-0947. Available from: https://dx.doi.org/10.3934/dcds.2021103.
    11. KRASILSHCHIK, Iosif Semjonovich and Petr VOJČÁK. On the algebra of nonlocal symmetries for the 4D Martínez Alonso-Shabat equation. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2021, vol. 163, may, p. "104122-1"-"104122-12", 12 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2021.104122.
    12. FORYŚ-KRAWIEC, Magdalena, Jana HANTÁKOVÁ and Piotr OPROCHA. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems - Series A. Springfield: American Institute of Mathematical Sciences, 2021. ISSN 1078-0947. Available from: https://dx.doi.org/10.3934/dcds.2021159.
    13. POPOVYCH, Roman, Vyacheslav M. BOYKO and Michael KUNZINGER. Parameter-dependent linear ordinary differential equations and topology of domains. Journal of Differential Equations. San DIego (USA): Academic Press Inc. Elsevier Science, 2021, vol. 284, may, p. 546-575. ISSN 0022-0396. Available from: https://dx.doi.org/10.1016/j.jde.2021.03.001.
    14. KOČAN, Zdeněk, Michal MÁLEK and Veronika KURKOVÁ. Properties of Dynamical Systems on Dendrites and Graphs. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. Singapore: World Scientific Publishing Co. Pte Ltd, 2021, vol. 31, No 7, p. "2150100-1"-"2150100-10", 10 pp. ISSN 0218-1274. Available from: https://dx.doi.org/10.1142/S0218127421501005.
    15. TROFIMCHUK, Sergei. Studies of dynamics of some scalar delayed models. 2021.
    16. BRADÍK, Jaroslav and Samuel Joshua ROTH. Typical Behaviour of Random Interval Homeomorphisms. Qualitative Theory of Dynamical Systems. Basel, Switzerland: Springer International Publishing, 2021, vol. 20, No 3, p. "73-1"-"73-20", 20 pp. ISSN 1575-5460. Available from: https://dx.doi.org/10.1007/s12346-021-00509-2.
    17. POLORECKÁ, Maria, Jozef KUBÁS, Pavel DANIHELKA, Katarína PETRLOVÁ, Katarína ŠTOFKOVÁ REPKOVÁ and Katarína BUGANOVÁ. Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management. Sustainability. Basel: MDPI, 2021, vol. 13, No 1, p. "438-1"-"438-15", 15 pp. ISSN 2071-1050. Available from: https://dx.doi.org/10.3390/su13010438.
    18. PETRLOVÁ, Katarína, Maria POLORECKÁ and Katarína HOLLÁ. Use of 3D Prints for Teaching Specialized Subjects. Online. In L. Gómez Chova, A. López Martínez, I. Candel Torres. INTED2021 Proceedings, 15th International Technology, Education and Development Conference. Neuveden: IATED, 2021, p. 10441-10446. ISBN 978-84-09-27666-0. Available from: https://dx.doi.org/10.21125/inted.2021.2183.
    19. VAŠÍČEK, Jakub and Raffaele VITOLO. WDVV equations and invariant bi-Hamiltonian formalism. Journal of High Energy Physics. New York: Springer, 2021, Neuveden, No 8, p. "129-0"-"129-28", 29 pp. ISSN 1029-8479. Available from: https://dx.doi.org/10.1007/JHEP08(2021)129.

    2020

    1. HASÍK, Karel, Sergei TROFIMCHUK, Anatoli F. IVANOV and Elena BRAVERMAN. A cyclic system with delay and its characteristic equation. Discrete and Continuous Dynamical Systems - Series S. Springfield: American Institute of Mathematical Sciences, 2020, vol. 13, No 1, p. 1-29. ISSN 1937-1632. Available from: https://dx.doi.org/10.3934/dcdss.2020001.
    2. ENGLIŠ, Miroslav and Genkai ZHANG. Connection and curvature on bundles on Bergman and Hardy spaces. Documenta Mathematica. Berlin (Germany): Deutsche Mathematiker-Vereinigung e.V., 2020, vol. 25, February, p. 189-217. ISSN 1431-0643. Available from: https://dx.doi.org/10.25537/dm.2020v25.189-217.
    3. BARTOŠ, Adam, Jozef BOBOK, Pavel PYRIH, Samuel Joshua ROTH and Benjamin VEJNAR. Constant slope, entropy, and horseshoes for a map on a tame graph. Ergodic Theory and Dynamical Systems. New York: Cambridge University Press, 2020, vol. 40, No 11, p. 2970-2994. ISSN 0143-3857. Available from: https://dx.doi.org/10.1017/etds.2019.29.
    4. ROTH, Samuel Joshua. Dynamics on dendrites with closed endpoint sets. Nonlinear Analysis: Theory, Methods & Applications. Oxford (GB): PERGAMON-ELSEVIER SCIENCE LTD, 2020, vol. 195, No 111745, p. "111745-1"-"111745-13", 13 pp. ISSN 0362-546X. Available from: https://dx.doi.org/10.1016/j.na.2020.111745.
    5. POPOVYCH, Roman, Stanislav OPANASENKO and Vyacheslav BOYKO. Enhanced group classification of nonlinear diffusion-reaction equations with gradient-dependent diffusivity. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2020, vol. 484, No 1, p. "123739-1"-"123739-30", 30 pp. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2019.123739.
    6. SERGYEYEV, Artur, Stanislav OPANASENKO, Alexander BIHLO and Roman POPOVYCH. Extended symmetry analysis of an isothermal no-slip drift flux model. Physica D: Nonlinear Phenomena. Amsterdam: Elsevier B.V., 2020, vol. 402, No 132188, p. "132188-1"-"132188-16", 16 pp. ISSN 0167-2789. Available from: https://dx.doi.org/10.1016/j.physd.2019.132188.
    7. ELEUTERI, Michela, Chiara GAVIOLI and Jana KOPFOVÁ. Fatigue and phase transition in an oscillating elastoplastic beam. Mathematical Modelling of Natural Phenomena. Les Ulis Cedex A (France): EDP Sciences S A, 2020, vol. 15, No 41, p. "41-1"-"41-27", 27 pp. ISSN 0973-5348. Available from: https://dx.doi.org/10.1051/mmnp/2019052.
    8. OPANASENKO, Stanislav and Roman POPOVYCH. Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation. Journal of Mathematical Physics. Melville (USA): American Institute of Physics, 2020, vol. 61, No 101515, p. "101515-1"-"101515-13", 13 pp. ISSN 0022-2488. Available from: https://dx.doi.org/10.1063/5.0003304.
    9. OPANASENKO, Stanislav, Alexander BIHLO, Roman POPOVYCH and Artur SERGYEYEV. Generalized symmetries, conservation laws and Hamiltonian structures of an isothermal no-slip drift flux model. Physica D: Nonlinear Phenomena. Amsterdam: Elsevier B.V., 2020, vol. 411, No 132546, p. "132546-1"-"132546-19", 19 pp. ISSN 0167-2789. Available from: https://dx.doi.org/10.1016/j.physd.2020.132546.
    10. CHLADNÁ, Zuzana, Jana KOPFOVÁ, Dmitrii RACHINSKII and Samiha C. ROUF. Global dynamics of SIR model with switched transmission rate. Journal of Mathematical Biology. Heidelberg (Germany): SPRINGER HEIDELBERG, 2020, vol. 80, No 4, p. 1209-1233. ISSN 0303-6812. Available from: https://dx.doi.org/10.1007/s00285-019-01460-2.
    11. ROTH, Samuel Joshua and Zuzana ROTH. Inequalities for entropy, Hausdorff dimension, and Lipschitz constants. Studia Mathematica. WARSZAWA: POLISH ACAD SCIENCES INST MATHEMATICS-IMPAN, 2020, vol. 250, No 3, p. 253-264. ISSN 0039-3223. Available from: https://dx.doi.org/10.4064/sm180705-2-11.
    12. LEAL DA SILVA, Priscila and Igor LEITE FREIRE. Integrability, existence of global solutions, and wave breaking criteria for a generalization of the Camassa-Holm equation. Studies in Applied Mathematics. Hoboken (USA): WILEY, 2020, vol. 145, No 3, p. 537-562. ISSN 0022-2526. Available from: https://dx.doi.org/10.1111/sapm.12327.
    13. CHLADNÁ, Zuzana, Jana KOPFOVÁ and Dmitrii RACHINSKII. Long term analysis of non-pharmaceutical interventions in SIR model. Online. In P. Frolkovič, K. Mikula, D. Ševčovič. ALGORITMY 2020: 21ST Conference on Scientific Computing. Bratislava: Slovak University of Technology, Bratislava, 2020, p. 1-10. ISBN 978-80-227-5032-5.
    14. HASÍK, Karel, Jana KOPFOVÁ, Petra NÁBĚLKOVÁ, Sergei TROFIMCHUK and Zuzana CHLADNÁ. Nonlinearly determined wavefronts of the Nicholson's diffusive equation: when small delays are not harmless. Journal of Differential Equations. San DIego: Academic Press Inc. Elsevier Science, 2020, vol. 268, No 9, p. 5156-5178. ISSN 0022-0396. Available from: https://dx.doi.org/10.1016/j.jde.2019.11.007.
    15. HASÍK, Karel, Jana KOPFOVÁ, Petra NÁBĚLKOVÁ and Sergei TROFIMCHUK. On the Geometric Diversity of Wavefronts for the Scalar Kolmogorov Ecological Equation. Journal of Nonlinear Science. New York: SPRINGER, 2020, vol. 30, No 6, p. 2989-3026. ISSN 0938-8974. Available from: https://dx.doi.org/10.1007/s00332-020-09642-9.
    16. KOPFOVÁ, Jana, Michela ELEUTERI, Erica IPOCOANA and Pavel KREJČÍ. Periodic solutions of a hysteresis model for breathing. ESAIM: Mathematical Modelling and Numerical Analysis. Les Ulis: EDP Sciences, 2020, vol. 54, No 1, p. 255-271. ISSN 0764-583X. Available from: https://dx.doi.org/10.1051/m2an/2019060.
    17. MÄKKÁ, Katarína, Katarína KAMPOVÁ, Darina STACHOVÁ and Katarína PETRLOVÁ. Security Risk to Filling Station. In Ladislav Hofreiter, Viacheslav Berezutskyi, Lucia Figuli, Zuzana Zvaková. Soft Target Protection. Dordrecht: Springer, 2020, p. 257-264. ISBN 978-94-024-1754-8. Available from: https://dx.doi.org/10.1007/978-94-024-1755-5_20.
    18. VAŠÍČEK, Jakub. Symmetries and conservation laws for a generalization of Kawahara equation. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2020, vol. 150, No 103579, p. "103579-1"-"103579-6", 6 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2019.103579.
    19. BLASCHKE, Petr and František ŠTAMPACH. The asymptotic zero distribution of Lommel polynomials as functions of their order with a variable complex argument. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2020, vol. 490, No 1, p. "124238-1"-"124238-19", 19 pp. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2020.124238.
    20. FERRAIOLI, Diego Catalano and Michal MARVAN. The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors. Annali di Matematica Pura ed Applicata. HEIDELBERG: SPRINGER HEIDELBERG, 2020, vol. 199, No 4, p. 1343-1380. ISSN 0373-3114. Available from: https://dx.doi.org/10.1007/s10231-019-00924-y.
    21. SERGYEYEV, Artur and Aneta WOJNAR. The Palatini star: exact solutions of the modified Lane-Emden equation. European Physical Journal C. New York (USA): SPRINGER, 2020, vol. 80, No 313, p. "313-1"-"313-6", 6 pp. ISSN 1434-6044. Available from: https://dx.doi.org/10.1140/epjc/s10052-020-7876-z.
    22. LEITE FREIRE, Igor. Wave breaking for shallow water models with time decaying solutions. Journal of Differential Equations. San DIego (USA): Academic Press Inc. Elsevier Science, 2020, vol. 269, No 4, p. 3769-3793. ISSN 0022-0396. Available from: https://dx.doi.org/10.1016/j.jde.2020.03.011.

    2019

    1. KOPFOVÁ, Jana, Michela ELEUTERI, Erica IPOCOANA and Pavel KREJČÍ. Breathing as a Periodic Gas Exchange in a Deformable Porous Medium. In Andrei Korobeinikov, Magdalena Caubergh, Tomás Lázaro, Josep Sardanyés. Extended Abstracts Spring 2018: Singularly Perturbed Systems, Multiscale. Cham, Switzerland: Springer International Publishing, 2019, p. 131-135. ISBN 978-3-030-25260-1. Available from: https://dx.doi.org/10.1007/978-3-030-25261-8_20.
    2. SERGYEYEV, Artur, Sergiy I. SKURATIVSKYI and Vsevolod A. VLADIMIROV. Compacton solutions and (non)integrability of nonlinear evolutionary PDEs associated with a chain of prestressed granules. Nonlinear Analysis: Real World Applications. Oxford, England: Elsevier Limited, 2019, vol. 47, June, p. 68-84. ISSN 1468-1218. Available from: https://dx.doi.org/10.1016/j.nonrwa.2018.09.005.
    3. MÁLEK, Michal and Samuel Joshua ROTH. Constant slope models and perturbation. Israel Journal of Mathematics. Jerusalem, Israel: The Hebrew University Magnes Press, 2019, vol. 230, No 1, p. 213-237. ISSN 0021-2172. Available from: https://dx.doi.org/10.1007/s11856-018-1814-x.
    4. SERGYEYEV, Artur and Maciej BŁASZAK. Contact Lax pairs and associated (3+1)-dimensional integrable dispersionless systems. In Norbert Euler, Maria Clara Nucci. Nonlinear Systems and Their Remarkable Mathematical Structures. 1st Edition. Boca Raton: Chapman and Hall/CRC, 2019, p. 29-58. Volume 2. ISBN 978-0-367-20847-9. Available from: https://dx.doi.org/10.1201/9780429263743-2.
    5. SERGYEYEV, Artur and Iosif S. KRASIL'SHCHIK. Integrability of Anti-Self-Dual Vacuum Einstein Equations with Nonzero Cosmological Constant: An Infinite Hierarchy of Nonlocal Conservation Laws. Annales Henri Poincaré. Cham, Switzerland: Springer International Publishing AG, 2019, vol. 20, No 8, p. 2699-2715. ISSN 1424-0637. Available from: https://dx.doi.org/10.1007/s00023-019-00816-0.
    6. MARVAN, Michal and Maxim V. PAVLOV. Integrable dispersive chains and their multi-phase solutions. Letters in Mathematical Physics. Dordrecht (Netherlands): Springer Netherlands, 2019, vol. 109, No 5, p. 1219-1245. ISSN 0377-9017. Available from: https://dx.doi.org/10.1007/s11005-018-1138-0.
    7. SERGYEYEV, Artur. Integrable (3+1)-dimensional system with an algebraic Lax pair. Applied Mathematics Letters. Oxford, England: Elsevier Limited, 2019, vol. 92, June, p. 196-200. ISSN 0893-9659. Available from: https://dx.doi.org/10.1016/j.aml.2019.01.026.
    8. KHAVKINE, Igor. Invariants in Relativity and Gauge Theory. 2019.
    9. HANTÁKOVÁ, Jana. Li-Yorke sensitivity does not imply Li-Yorke chaos. Ergodic Theory and Dynamical Systems. New York: Cambridge University Press, 2019, vol. 39, No 11, p. 3066-3074. ISSN 0143-3857. Available from: https://dx.doi.org/10.1017/etds.2018.10.
    10. BLASCHKE, Petr. Matrix calculus and related hypergeometric functions. Integral Transforms and Special Functions. Abingdon: Taylor and Francis Ltd., 2019, vol. 30, No 9, p. 743-773. ISSN 1065-2469. Available from: https://dx.doi.org/10.1080/10652469.2019.1617290.
    11. VOJČÁK, Petr, Oleg I. MOROZOV and Iosif S. KRASIL'SHCHIK. Nonlocal symmetries, conservation laws, and recursion operators of the Veronese web equation. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2019, vol. 146, December, p. "103519-1"-"103519-11", 11 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2019.103519.
    12. PRAVEC, Vojtěch. On Dynamics of Triangular Maps of the Square with Zero Topological Entropy. Qualitative Theory of Dynamical Systems. Basel, Switzerland: Springer International Publishing, 2019, vol. 18, No 3, p. 761-768. ISSN 1575-5460. Available from: https://dx.doi.org/10.1007/s12346-018-00311-7.
    13. MLÍCHOVÁ, Michaela. On Li-Yorke sensitivity and other types of chaos in dynamical systems. 2019.
    14. BARAN, Hynek, Petr BLASCHKE, Michal MARVAN and Iosif S. KRASIL'SHCHIK. On symmetries of the Gibbons-Tsarev equation. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2019, vol. 144, October, p. 54-80. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2019.05.011.
    15. ENGLIŠ, Miroslav. Q(p) spaces for weighted Möbius actions. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2019, vol. 477, No 2, p. 1434-1462. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2019.05.023.
    16. ENGLIŠ, Miroslav, Hélène BOMMIER-HATO and El-Hassan YOUSSFI. Radial balanced metrics on the unit ball of the Kepler manifold. Journal of Mathematical Analysis and Applications. San Diego (USA): Academic Press Inc. Elsevier Science, 2019, vol. 475, No 1, p. 736-754. ISSN 0022-247X. Available from: https://dx.doi.org/10.1016/j.jmaa.2019.02.067.
    17. CAVRO, Jakub. Recurrence in non-autonomous dynamical systems. Journal of Difference Equations and Applications. Abingdon, England: Taylor and Francis Ltd., 2019, vol. 25, 9-10, p. 1404-1411. ISSN 1023-6198. Available from: https://dx.doi.org/10.1080/10236198.2019.1651849.
    18. PRAVEC, Vojtěch. Remarks on definitions of periodic points for nonautonomous dynamical system. Journal of Difference Equations and Applications. Abingdon, England: Taylor and Francis Ltd., 2019, vol. 25, 9-10, p. 1372-1381. ISSN 1023-6198. Available from: https://dx.doi.org/10.1080/10236198.2019.1641496.
    19. ENGLIŠ, Miroslav and Harald UPMEIER. Reproducing kernel functions and asymptotic expansions on Jordan-Kepler manifolds. Advances in Mathematics. San Diego (USA): Academic Press Inc. Elsevier Science, 2019, vol. 347, 30 April 2019, p. 780-826. ISSN 0001-8708. Available from: https://dx.doi.org/10.1016/j.aim.2019.03.001.
    20. POPOVYCH, Roman. Symmetries and conservation laws of differential equations. 2019.
    21. ROTH, Samuel Joshua and Josef BOBOK. The infimum of Lipschitz constants in the conjugacy class of an interval map. Proceedings of the American Mathematical Society. Providence: American Mathematical Society, 2019, vol. 147, No 1, p. 255-269. ISSN 0002-9939. Available from: https://dx.doi.org/10.1090/proc/14255.
    22. ENGLIŠ, Miroslav. Uniqueness of smooth radial balanced metrics on the disc. Complex Variables and Elliptic Equations. An International Journal. Abingdon: Taylor and Francis Ltd., 2019, vol. 64, No 3, p. 519-540. ISSN 1747-6933. Available from: https://dx.doi.org/10.1080/17476933.2018.1454915.
    23. LEITE FREIRE, Igor and Priscila Leal DA SILVA. Well-posedness, travelling waves and geometrical aspects of generalizations of the Camassa-Holm equation. Journal of Differential Equations. San DIego: Academic Press Inc. Elsevier Science, 2019, vol. 267, No 9, p. 5318-5369. ISSN 0022-0396. Available from: https://dx.doi.org/10.1016/j.jde.2019.05.033.
    24. PETRLOVÁ, Katarína, Katarína MÄKKÁ, Katarína KAMPOVÁ and Martin BOROŠ. Workplace Training in the Fuels Distribution Company. In INTED2019 Proceedings. Valencia: IATED, 2019, p. 3990-3995. ISBN 978-84-09-08619-1. Available from: https://dx.doi.org/10.21125/inted.2019.1004.
Display details
Displayed: 4/1/2025 08:12