Filter publications

    2023

    1. HOLBA, Pavel. Complete classification of local conservation laws for generalized Cahn-Hilliard-Kuramoto-Sivashinsky equation. Studies in Applied Mathematics. Hoboken (USA): WILEY, 2023, vol. 151, No 1, p. 171-182. ISSN 0022-2526. Available from: https://dx.doi.org/10.1111/sapm.12576.
    2. MARVAN, Michal. Matching van Stockum dust to Papapetrou vacuum. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2023, vol. 190, august, p. "104878-1"-"104878-10", 10 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2023.104878.
    3. MARVAN, Michal. Matching van Stockum dust to Papapetrou vacuum. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2023, vol. 190, p. 104878-104887. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2023.104878.
    4. VOJČÁK, Petr. Non-Abelian covering and new recursion operators for the 4D Martínez Alonso-Shabat equation. Communications in Nonlinear Science and Numerical Simulation. Amsterdam: Elsevier B.V., 2023, vol. 118, april, p. "107007-1"-"107007-11", 11 pp. ISSN 1007-5704. Available from: https://dx.doi.org/10.1016/j.cnsns.2022.107007.

    2022

    1. SERGYEYEV, Artur. Recursion Operators for Multidimensional Integrable PDEs. Acta Applicandae Mathematicae. Dordrecht: Springer, 2022, vol. 181, No 1, p. "10-1"-"10-12", 12 pp. ISSN 0167-8019. Available from: https://dx.doi.org/10.1007/s10440-022-00524-8.
    2. VAŠÍČEK, Jakub. Symmetry nonintegrability for extended K(m, n, p) equation. Journal of Mathematical Chemistry. New York: Springer, 2022, vol. 60, No 2, p. 417-422. ISSN 0259-9791. Available from: https://dx.doi.org/10.1007/s10910-021-01312-9.
    3. VAŠÍČEK, Jakub and Raffaele VITOLO. WDVV equations: symbolic computations of Hamiltonian operators. Applicable Algebra in Engineering Communication and Computing. New York: Springer, 2022, vol. 33, No 6, p. 915-934. ISSN 0938-1279. Available from: https://dx.doi.org/10.1007/s00200-022-00565-4.

    2021

    1. SERGYEYEV, Artur, Maciej BŁASZAK and Krzysztof MARCINIAK. Deforming lie algebras to frobenius integrable nonautonomous hamiltonian systems. Reports on Mathematical Physics. Oxford (GB): Elsevier Ltd., 2021, vol. 87, No 2, p. 249-263. ISSN 0034-4877. Available from: https://dx.doi.org/10.1016/S0034-4877(21)00028-8.
    2. BARAN, Hynek. Infinitely many commuting nonlocal symmetries for modified Martínez Alonso-Shabat equation. Communications in Nonlinear Science and Numerical Simulation. Amsterdam: Elsevier B.V., 2021, vol. 96, may, p. "105692-1"-"105692-4", 4 pp. ISSN 1007-5704. Available from: https://dx.doi.org/10.1016/j.cnsns.2021.105692.
    3. BARAN, Hynek. Integrabilita a geometrie (Integrability and Geometry). 2021.
    4. HOLBA, Pavel. Nonexistence of local conservation laws for generalized Swift-Hohenberg equation. Journal of Mathematical Chemistry. New York: Springer, 2021, vol. 59, No 6, p. 1474-1478. ISSN 0259-9791. Available from: https://dx.doi.org/10.1007/s10910-021-01249-z.
    5. KRASILSHCHIK, Iosif Semjonovich and Petr VOJČÁK. On the algebra of nonlocal symmetries for the 4D Martínez Alonso-Shabat equation. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2021, vol. 163, may, p. "104122-1"-"104122-12", 12 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2021.104122.
    6. VAŠÍČEK, Jakub and Raffaele VITOLO. WDVV equations and invariant bi-Hamiltonian formalism. Journal of High Energy Physics. New York: Springer, 2021, Neuveden, No 8, p. "129-0"-"129-28", 29 pp. ISSN 1029-8479. Available from: https://dx.doi.org/10.1007/JHEP08(2021)129.

    2020

    1. SERGYEYEV, Artur, Stanislav OPANASENKO, Alexander BIHLO and Roman POPOVYCH. Extended symmetry analysis of an isothermal no-slip drift flux model. Physica D: Nonlinear Phenomena. Amsterdam: Elsevier B.V., 2020, vol. 402, No 132188, p. "132188-1"-"132188-16", 16 pp. ISSN 0167-2789. Available from: https://dx.doi.org/10.1016/j.physd.2019.132188.
    2. OPANASENKO, Stanislav, Alexander BIHLO, Roman POPOVYCH and Artur SERGYEYEV. Generalized symmetries, conservation laws and Hamiltonian structures of an isothermal no-slip drift flux model. Physica D: Nonlinear Phenomena. Amsterdam: Elsevier B.V., 2020, vol. 411, No 132546, p. "132546-1"-"132546-19", 19 pp. ISSN 0167-2789. Available from: https://dx.doi.org/10.1016/j.physd.2020.132546.
    3. VAŠÍČEK, Jakub. Symmetries and conservation laws for a generalization of Kawahara equation. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2020, vol. 150, No 103579, p. "103579-1"-"103579-6", 6 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2019.103579.
    4. FERRAIOLI, Diego Catalano and Michal MARVAN. The equivalence problem for generic four-dimensional metrics with two commuting Killing vectors. Annali di Matematica Pura ed Applicata. HEIDELBERG: SPRINGER HEIDELBERG, 2020, vol. 199, No 4, p. 1343-1380. ISSN 0373-3114. Available from: https://dx.doi.org/10.1007/s10231-019-00924-y.
    5. SERGYEYEV, Artur and Aneta WOJNAR. The Palatini star: exact solutions of the modified Lane-Emden equation. European Physical Journal C. New York (USA): SPRINGER, 2020, vol. 80, No 313, p. "313-1"-"313-6", 6 pp. ISSN 1434-6044. Available from: https://dx.doi.org/10.1140/epjc/s10052-020-7876-z.

    2019

    1. SERGYEYEV, Artur, Sergiy I. SKURATIVSKYI and Vsevolod A. VLADIMIROV. Compacton solutions and (non)integrability of nonlinear evolutionary PDEs associated with a chain of prestressed granules. Nonlinear Analysis: Real World Applications. Oxford, England: Elsevier Limited, 2019, vol. 47, June, p. 68-84. ISSN 1468-1218. Available from: https://dx.doi.org/10.1016/j.nonrwa.2018.09.005.
    2. SERGYEYEV, Artur and Maciej BŁASZAK. Contact Lax pairs and associated (3+1)-dimensional integrable dispersionless systems. In Norbert Euler, Maria Clara Nucci. Nonlinear Systems and Their Remarkable Mathematical Structures. 1st Edition. Boca Raton: Chapman and Hall/CRC, 2019, p. 29-58. Volume 2. ISBN 978-0-367-20847-9. Available from: https://dx.doi.org/10.1201/9780429263743-2.
    3. SERGYEYEV, Artur and Iosif S. KRASIL'SHCHIK. Integrability of Anti-Self-Dual Vacuum Einstein Equations with Nonzero Cosmological Constant: An Infinite Hierarchy of Nonlocal Conservation Laws. Annales Henri Poincaré. Cham, Switzerland: Springer International Publishing AG, 2019, vol. 20, No 8, p. 2699-2715. ISSN 1424-0637. Available from: https://dx.doi.org/10.1007/s00023-019-00816-0.
    4. MARVAN, Michal and Maxim V. PAVLOV. Integrable dispersive chains and their multi-phase solutions. Letters in Mathematical Physics. Dordrecht (Netherlands): Springer Netherlands, 2019, vol. 109, No 5, p. 1219-1245. ISSN 0377-9017. Available from: https://dx.doi.org/10.1007/s11005-018-1138-0.
    5. SERGYEYEV, Artur. Integrable (3+1)-dimensional system with an algebraic Lax pair. Applied Mathematics Letters. Oxford, England: Elsevier Limited, 2019, vol. 92, June, p. 196-200. ISSN 0893-9659. Available from: https://dx.doi.org/10.1016/j.aml.2019.01.026.
    6. VOJČÁK, Petr, Oleg I. MOROZOV and Iosif S. KRASIL'SHCHIK. Nonlocal symmetries, conservation laws, and recursion operators of the Veronese web equation. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2019, vol. 146, December, p. "103519-1"-"103519-11", 11 pp. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2019.103519.
    7. BARAN, Hynek, Petr BLASCHKE, Michal MARVAN and Iosif S. KRASIL'SHCHIK. On symmetries of the Gibbons-Tsarev equation. Journal of Geometry and Physics. Amsterdam: Elsevier B.V., 2019, vol. 144, October, p. 54-80. ISSN 0393-0440. Available from: https://dx.doi.org/10.1016/j.geomphys.2019.05.011.
Display details
Displayed: 29/12/2024 16:57