Vámi zvolený výběr obsahuje 17 výsledků. Upravit výběr.
Filtrování publikací

    2023

    1. RÝŽOVÁ, Veronika. Birkhoff centre and backward limit points. Topology and its Applications. Amsterdam: Elsevier B.V., 2023, roč. 324, february, s. "108338-1"-"108338-7", 7 s. ISSN 0166-8641. Dostupné z: https://dx.doi.org/10.1016/j.topol.2022.108338.
    2. FORYŚ-KRAWIEC, Magdalena, Jana HANTÁKOVÁ, Jiří KUPKA, Piotr OPROCHA a Samuel Joshua ROTH. Dendrites and measures with discrete spectrum. Ergodic Theory and Dynamical Systems. New York: Cambridge University Press, 2023, roč. 43, č. 2, s. 545-555. ISSN 0143-3857. Dostupné z: https://dx.doi.org/10.1017/etds.2021.157.
    3. LI, Risong a Michal MÁLEK. N-Convergence and Chaotic Properties of Non-autonomous Discrete Systems. Qualitative Theory of Dynamical Systems. Basel, Switzerland: Springer International Publishing, 2023, roč. 22, č. 2, s. "78-1"-"78-17", 17 s. ISSN 1575-5460. Dostupné z: https://dx.doi.org/10.1007/s12346-023-00779-y.
    4. MLÍCHOVÁ, Michaela. Recollections about Jaroslav Smítal. Real Analysis Exchange. Lansing, USA: Michigan State University Press, 2023, roč. 48, č. 1, s. 1-18. ISSN 0147-1937. Dostupné z: https://dx.doi.org/10.14321/realanalexch.48.1.1659420745.

    2022

    1. MLÍCHOVÁ, Michaela a Lenka RUCKÁ. Czech-Slovak Workshop on Discrete Dynamical Systems 2022. 2022.
    2. BALIBREA, Francisco a Lenka RUCKÁ. Local Distributional Chaos. Qualitative Theory of Dynamical Systems. Basel, Switzerland: Springer Basel AG, 2022, roč. 21, č. 4, s. "130-1"-"130-10", 10 s. ISSN 1575-5460. Dostupné z: https://dx.doi.org/10.1007/s12346-022-00661-3.
    3. HANTÁKOVÁ, Jana. On long-term behaviour of trajectories in discrete dynamical systems. 2022.
    4. FORYS-KRAWIEC, Magdalena, Jana HANTÁKOVÁ a Piotr OPROCHA. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems. Springfield: American Institute of Mathematical Sciences, 2022, roč. 42, č. 3, s. 1435-1463. ISSN 1078-0947. Dostupné z: https://dx.doi.org/10.3934/dcds.2021159.
    5. HANTÁKOVÁ, Jana, Samuel Joshua ROTH a Lubomír SNOHA. Spaces where all closed sets are α-limit sets. Topology and its Applications. Amsterdam: Elsevier B.V., 2022, roč. 310, april, s. "108035-1"-"108035-16", 16 s. ISSN 0166-8641. Dostupné z: https://dx.doi.org/10.1016/j.topol.2022.108035.
    6. HANTÁKOVÁ, Jana, Samuel Joshua ROTH a Lubomír SNOHA. Spaces where all closed sets are α-limit sets. Topology and its Applications. Amsterdam: Elsevier B.V., 2022, roč. 2022, č. 310, s. 108035. ISSN 0166-8641. Dostupné z: https://dx.doi.org/10.1016/j.topol.2022.108035.

    2021

    1. FORYŚ-KRAWIEC, Magdalena, Jana HANTÁKOVÁ, Jiří KUPKA, Piotr OPROCHA a Samuel Joshua ROTH. Dendrites and measures with discrete spectrum. Ergodic Theory and Dynamical Systems. New York: Cambridge University Press, 2021, roč. 2021, 11 s. ISSN 0143-3857. Dostupné z: https://dx.doi.org/10.1017/etds.2021.157.
    2. HANTÁKOVÁ, Jana a Samuel Joshua ROTH. On backward attractors of interval maps. Nonlinearity. Bristol (GB): IOP Publishing Ltd, 2021, roč. 34, č. 11, s. 7415-7445. ISSN 0951-7715. Dostupné z: https://dx.doi.org/10.1088/1361-6544/ac23b6.
    3. FORYŚ-KRAWIEC, Magdalena, Jana HANTÁKOVÁ a Piotr OPROCHA. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems - Series A. Springfield: American Institute of Mathematical Sciences, 2021. ISSN 1078-0947. Dostupné z: https://dx.doi.org/10.3934/dcds.2021159.
    4. KOČAN, Zdeněk, Michal MÁLEK a Veronika KURKOVÁ. Properties of Dynamical Systems on Dendrites and Graphs. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering. Singapore: World Scientific Publishing Co. Pte Ltd, 2021, roč. 31, č. 7, s. "2150100-1"-"2150100-10", 10 s. ISSN 0218-1274. Dostupné z: https://dx.doi.org/10.1142/S0218127421501005.

    2019

    1. KOČAN, Zdeněk, Michal MÁLEK a Artur SERGYEYEV. Dynamics, Geometry and Analysis: 20 years of Mathematical Institute in Opava. 2019.
    2. HANTÁKOVÁ, Jana. Li-Yorke sensitivity does not imply Li-Yorke chaos. Ergodic Theory and Dynamical Systems. New York: Cambridge University Press, 2019, roč. 39, č. 11, s. 3066-3074. ISSN 0143-3857. Dostupné z: https://dx.doi.org/10.1017/etds.2018.10.
    3. MLÍCHOVÁ, Michaela. On Li-Yorke sensitivity and other types of chaos in dynamical systems. 2019.
Zobrazit podrobně
Zobrazeno: 20. 11. 2024 09:40