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Why do we need to do modelling?  

• to have an understanding of the behavior of disease spread 
• to make sense of data 
• to forecast future behavior, estimate the severity of an     
 epidemic 
• to inform future collection of data: what type of data needed, 
 when and where to collect to obtain information 
 required for predictions 
• to assess and compare potential intervention strategies 
• to optimize control measures 
• to estimate key parameters 
• to run „experiments” (simulations) 
• by qualitative analysis to provide information about all 
 possible scenarios 
 





in: D Earn, A Light Introduction to Modelling Recurrent Epidemics, 
Lecture Notes in Mathematical Epidemiology, 2009 

London 1665-1666 

More than 15% of the population of London died in the Great Plague. It appeared 
quite suddenly, grew in intensity, and then disappeared, leaving part of the population 
untouched. Why? We will understand by the end of this lecture (I hope ) 



Our strategy had not changed, but whereas yesterday 
it had obviously failed, today it seemed triumphant. 
Indeed, one's chief impression was that the epidemic 
had called a retreat after reaching all its objectives; it 
had, so to speak, achieved its purpose. 

Albert Camus,  The Plague (La Peste, 1948) 



Why are these mortality curves are so similar in distant cities?  



Bernoulli’s question: how life expectancies would change if we  
could completely eliminate smallpox by inoculation? The gain in  
life expectancy after elimination of this cause of death can be 
explicitly expressed in terms of the case fatality and the endemic  
prevalence of susceptibles. 
 
Related to financial mathematics, as in that time life annuities were sold. 

First serious mathematical treatment of a problem in epidemiology 
1766 Daniel Bernoulli (1700-1782) 

Smallpox: very high mortality rate 
Variolation (inoculation): dangerous practice of immunization, 
heated debates, hundreds of articles on pros and cons 



Modelling approaches 



Let’s start with an incredibly naive approach 



Let’s start with an incredibly naive approach 



Let’s start with an incredibly naive approach 



Let’s start with an incredibly naive approach 



Assume that every infected student infects q other students. 
 
What will be the total number of infections? High school math:  

or 

Depending on   or 

Clearly a very poor model (but not as bad as it seems at first), 
because at a later stage of the epidemic, this q can not be 
sustained. 



Simulation file 



What is a compartmental model? 

Consider a compartment, in 
which material can flow 
through (in an out) 

Put in some water 

ria Make some holes 

Add water at constant rate K 

W(t) 

𝒅𝑾(𝒕)

𝒅𝒕
= −𝒂𝑾(𝒕) 

𝒅𝑾(𝒕)

𝒅𝒕
= 𝑲 − 𝒂𝑾(𝒕) ria 



Now consider multiple compartments, each including a group 
of people, who are allowed to move from an to another. Then 
we use differential equations to describe the flow of people. 

Population is divided into three disjoint groups: 
 

• Susceptible: individuals in the population who have not been infected 

• Infectious: infected individuals who are contagious 

• Removed: individuals who have recovered from the disease and 

immune (or who have died) 
 



SIR model (without demography) 

S(t), I(t), R(t) denotes the number of individuals in the given compartments 
at time t. 
 
Assumptions: 
 
• Homogeneous population 
• Closed population (S(t)+I(t)+R(t)=N constant), no birth and death 
• Disease spread by contacts between persons 
• Well-mixed population (any two persons are equally likely to encounter 

each other)  
• Time homogeneity (parameters don’t change) 
• Infectious individuals recover at a given per capita rate 
 



SIR model (without demography) 

C(N) per capita contact rate 
P transmission probability per contact per unit time 
Number of new infections per unit time (transfer rate from S to I at time t): 

𝑰(𝒕) 𝑋 𝑪(𝑵) 𝑋 (𝑺(𝒕) / 𝑵) 𝑋 𝑷 =  𝜷 𝑺(𝒕) 𝑰(𝒕), 
with the notation 𝜷 = 𝑪(𝑵)𝑷/𝑵. 
 
Average length of infectiousness: 1/ 𝜶 

𝜷 𝑺 𝑰 𝜶𝑰 



SIR model analysis 

Constant population size built in:   𝐒’ + 𝐈’ + 𝐑’ = 𝐍′ = 𝟎 
 
Computer can solve special cases for us. Two different scenarios: 
 
𝜷=0.7  𝜶 = 𝟎. 𝟗  N=100   𝜷=2  𝜶 = 𝟎. 𝟐  N=100 
 
 
 

Disease dies out quickly vs large outbreak. What’s the difference?  
How can we distinguish? 



Number of infectious individuals increasing when 𝜷𝑺 𝒕 > 𝜶 

At the beginning (t=0):  𝜷𝑺 𝟎 > 𝜶 

Equivalently,  𝐑𝟎 =
𝛃𝐒(𝟎)

𝛂
> 𝟏  

Basic reproduction number = length of infectious period X  
number of new infections per unit time per one infectious individual 
= total number of secondary infection by a single infected individual  
Introduced into a wholly susceptible population (N ≈ 𝑆 0 ) 

𝐑𝟎 is a threshold parameter  



How to decrease R0 ? 

𝐑𝟎 =
𝛃𝐒(𝟎)

𝛂
 

• Decrease 𝛃 – reduce transmission probability, or reduce contacts 
• Decrease 𝐒 𝟎  – vaccination  
• Increase 𝛂 – treatment (shortening infectious period)  

Now we understand Camus:  after many people got infected, 

once S(t) drops below 𝛂/𝛃, the disease dies out quickly. 
 



Mathematics of vaccination / herd immunity 

𝐑𝟎 =
𝛃𝐒(𝟎)

𝛂
 

𝐑𝐕 =
𝛃𝐒(𝟎)(𝟏 − 𝐕)

𝛂
= (𝟏 − 𝐕)𝐑𝟎 

𝐑𝐕 < 𝟏  𝑽 > 𝟏 − 𝟏/𝐑𝟎 



More detailed mathematical analysis of SIR model 
 
• Solutions remain nonnegative 
• S(t) is monotone decreasing 
• I(t) is converging to 0 (can be proven from S’+I’= −𝜶 I ). 
• S(t) is also converging, but where (final size, that gives also the 

total number of infections) ? 
• What is the peak size? 

Consider dI/dS, separate variables and integrate to obtain: 

constant 

This is called a first integral (invariant) of the system. While the SIR differential  
equations can not be solved explicitly, the first integral essentially solves it. 

This leads to the Final Size Relation: 
  

𝐼 𝑡 + 𝑆 𝑡 −
𝛼

𝛽
log𝑆 𝑡 = 𝐼 0 + 𝑆 0 −

𝛼

𝛽
log𝑆 0 = 𝑆 ∞ −

𝛼

𝛽
log𝑆 ∞  



Solutions move along the  
level curves of the first integral  



Does this simple SIR  
model work? 



Taken from Brauer & Castillo-Chavez book (2011) 









SIR with demography (N=1) 

𝜷 𝑺 𝑰 𝜶𝑰 

𝝁𝑰 𝝁𝑺 

𝝁 

𝝁𝑹 

Disease Free Equilibrium (1,0,0) 
 
Endemic Equilibrium (1/ R0 , I*,R*) 
 
R0  is a threshold that determines which equilibrium is globally asymptotically stable 

𝐑𝟎 =
𝛃

𝛂 + 𝝁 
 



SIR with vs without demography 

𝜷 = 𝟐, 𝛂 = 𝟎. 𝟐, 𝛍=0.1 vs. 0 

Threshold property: disease will be eradicated, or disease remains endemic. 



 BC 2700 in Chinese medical texts 

    Mal’aria = ‘bad air’ in Latin 

 1898: malaria is caused by parasites transmitted by 

mosquitoes  

 

 

 

                                                                       Ronald Ross 

 

 

 

 

 

A vector borne disease: brief history of 

malaria modeling 



Mosquitoes transmit malaria. 

Cool! Let’s go and finish 

them all. 

That’s pointless. 
We can’t kill all of them anyway. 

We don’t have to kill all mosquitoes. 
Look at my model. 



Human 

Mosquito 
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It is sufficient to reduce the  
mosquito population to achieve R0<1. 

0

 (contact rate) x (mosquito population)

(recovery rate) 
R C

 If R0<1, malaria disappears. 

 If R0>1, malaria persists (endemic) 

Mosquito Population  
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Threshold dynamics for Ross-Macdonald models  
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Extensions of the basic model: SIS, SEIR, SEIRS, SLAIR, 
treatment, vaccination, quarantine, two strains… 

S S E I R I 



Heterogeneity: age, sex, location… 

Basic reproduction number: secondary infections 
by a single infected individual. But in a 
heterogeneous model there are many types of 
individuals! How can we define R0 ? 

𝑀 =
𝑅 1,1  
𝑅(2,1)
𝑅(3,1)

 𝑅(1,2)
 𝑅(2,2)
 𝑅(3,2)

   𝑅(1,3)
  𝑅(2,3)
  𝑅(3,3)

 

Next Generation Matrix – as an example, let there be three types of persons. 
Construct a matrix 

where R(i,j) expresses that how many secondary infections generated among  
type j persons by a type i person.  

R0 is defined as the spectral radius of this matrix (dominant real eigenvalue). 
 

Example: (hetero)Sexually transmitted diseases: 𝑀 =
0 𝐴
𝐵 0

 and R0= 𝐴𝐵 

 



Example: an age structured influenza model with vaccination 

Figure from Mossong et al 



videok 



Does R0 tell us the whole story? Sometimes, but not always. 



Containing a zombie outbreak 

After all this serious stuff, at the end let us consider a cheerful disease 



Forthcoming (September 2014) 
Paper $49.95 CAD 

 

Chapter 17: Baneling dynamics in Legend of the Seeker 

by Gergely Röst  


