FPF:UIBUC21 Graph Theory - Course Information
UIBUC21 Graph Theory
Faculty of Philosophy and Science in OpavaWinter 2013
- Extent and Intensity
- 2/2/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Luděk Cienciala, Ph.D. (lecturer)
Mgr. Martina Foldynová (seminar tutor) - Guaranteed by
- doc. RNDr. Luděk Cienciala, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Computer science in combination with another discipline (programme FPF, B1803 InDO)
- Computer science in combination with another discipline (programme FPF, B6107 HuSt)
- Course objectives
- In this course students learn the basic concepts of the proving techniques and possible applications of graph theory.
- Syllabus (in Czech)
- 1. Grafy a jednoduché grafy, stupeň vrcholu.
2. Podgrafy, reprezentace grafů pomocí matic, cesty, cykly, dosažitelnost, souvislost, souvislé, nesouvislé grafy, vzdálenost v grafu, excentricita vrcholu, průměr a poloměr grafu.
3. Stromy, třídy grafů.
4. Další třídy grafů - kompletní grafy, bipartitní a multi-partitní grafy, izomorfismus, automorfismus. Vrcholová a hranová souvislost, bloky.
5. Párování, pokrytí, hranové barvení grafů, párování a pokrytí v bipartitních grafech, algoritmus hledající nesaturované alternující cesty.
6. Vrcholové barvení grafů, planární grafy.
7. Problém 4 barev, Neplanární grafy, Eulerovské grafy, Úlohy typu bludiště - Tarryho algoritmus, Trémauxův algoritmus.
8. Hamiltonovské grafy, orientované grafy.
9. Orientované grafy, turnaje, sítě, toky a řezy.
10. Algoritmus nalezení minimální kostry grafu, Primův algoritmus, Kruskalův, Obecné schéma prohledávání grafu - značkování vrcholů.
11. Prohledávání grafů do šířky, do hloubky, Backtracking.
- 1. Grafy a jednoduché grafy, stupeň vrcholu.
- Literature
- recommended literature
- Fronček, D. Úvod do teorie grafů. Opava, FPF SU, 2000. info
- Bollobas, B. Modern Graph Theory. New York, Springer, 1998. info
- Diestel, R. Graph Theory. New York, Springer, 1997. info
- Demel, J. Grafy. Praha, SNTL, 1988. info
- Kolář, J. Grafy. Praha, ČVUT, 1984. info
- Kolář, J. Grafy - cvičení. Praha, ČVUT, 1984. info
- Bosák, J. Grafy a ich aplikácie. Bratislava, Alfa, 1980. info
- Behzad, M., Chartrand, G. Graphs and Digraphs. Weber, Schmidt, 1979. info
- Bondy, J. A. Graph Theory with Applications. The Macmillan Press, 1976. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
- Teacher's information
- Credit: full-time students wrote the exercises two credit tests scoring 20 points each.
Exam: Total of examination exam can earn 60 points. For the successful completion students need to get 30 points. Mark for full-time study is determined by adding the points for the exam and points that the student earned during the semester in the course. Mark the combined study is determined from the points gained from examination test.
- Enrolment Statistics (Winter 2013, recent)
- Permalink: https://is.slu.cz/course/fpf/winter2013/UIBUC21