FPF:UIMOIBP033 Seminar in Mathematics I - Course Information
UIMOIBP033 Seminar in Mathematics I
Faculty of Philosophy and Science in OpavaWinter 2020
- Extent and Intensity
- 0/2/0. 2 credit(s). Type of Completion: z (credit).
- Teacher(s)
- doc. RNDr. Luděk Cienciala, Ph.D. (seminar tutor)
doc. RNDr. Lucie Ciencialová, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Luděk Cienciala, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava - Timetable of Seminar Groups
- UIMOIBP033/A: each even Friday 8:05–11:20 B2, L. Ciencialová
- Prerequisites (in Czech)
- TYP_STUDIA(B)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Information and communication technologies (programme FPF, MOI)
- Course objectives
- The aim of the seminar is to support and expand knowledge of mathematics with a link to other subjects of the study plan, which are based on knowledge of high school mathematics, such as Mathematics I, Mathematics II and others.
- Learning outcomes
- After completing the course, the student will be able to:
- solve mathematical problems in the range of mathematics for grammar schools - Syllabus
- 1. Modifications of algebraic expressions, operations with fractions, powers and roots.
- 2. Polynomials, operations with polynomials, determination of roots, decomposition of polynomials into the product of root factors, addition to a square.
- 3. The concept of a function, one real variable, its domain, domain of values.
- 4. Elementary functions, their properties and graphs, transformation of graphs.
- 5. Solution of simple algebraic equations, linear equations, quadratic and some types of equations of higher degrees.
- 6. Systems of algebraic equations.
- 7. Inequalities, solution of linear and quadratic inequalities and their systems, inequalities with absolute value.
- 8. Graphical solution of equations and inequalities using graphs of elementary functions.
- Literature
- required literature
- I. Bušek - L. Boček - E. Calda. Matematika pro gymnázia - Základní poznatky z matematiky. info
- POLÁK, J. Přehled středoškolské matematiky. Prometheus, 2015. ISBN 978-80-7196-458-2. info
- PETÁKOVÁ, J. Matematika: příprava k maturitě a k přijímacím zkouškám na vysoké školy. Prometheus, 2012. info
- ODVÁRKO, O. Matematika pro gymnázia: Funkce. 4. vydání. Prometheus, 2008. ISBN 978-80-7196-357-8. info
- ODVÁRKO, O. Matematika pro gymnázia: Goniometrie. 4. vydání. Prometheus, 2008. ISBN 978-80-7196-359-2. info
- CHARVÁT, J, J ZHOUF and L BOČEK. Matematika pro gymnázia: Rovnice a nerovnice. 4. vydání. Prometheus, 1999. ISBN 978-80-7196-362-2. info
- recommended literature
- HEJKRLÍK, P. Funkce. Hejpa, 2014.
- CIZLEROVÁ, M and M ZAHRADNÍČEK. Matematika pro střední školy. 4. díl: Funkce I. Didaktis, 2014. ISBN 978-80-7358-214-2. info
- HEJKRLÍK, P. Mnohočleny a výrazy. Hejpa, 2010. info
- HEJKRLÍK, P. Mnohočleny a výrazy. Hejpa, 2010. info
- JANEČEK, F. Sbírka úloh pro SŠ: Výrazy, rovnice, nerovnice a jejich soustavy. Prometheus, 2010. ISBN 978-80-7196-360-8. info
- KANTOREK, P and Z VOŠICKÝ. Matematika v kostce pro SŠ. Fragment, 2007. ISBN 978-80-253-0191-3. info
- HEJKRLÍK, P. Rovnice a nerovnice s absolutní hodnotou, soustavy rovnic. Hejpa, 2007. info
- HEJKRLÍK, P. Rovnice a nerovnice. Hejpa, 2006. info
- Teaching methods
- Seminar
- Assessment methods
- Compulsory participation in seminars at least 75%. The student writes two credit tests in the exercises, scored a maximum of 30 points for each. He also submits solutions to five homework assignments. He gets a maximum of 8 points for each homework. 50 points are required to obtain the credit.
- Language of instruction
- Czech
- Enrolment Statistics (Winter 2020, recent)
- Permalink: https://is.slu.cz/course/fpf/winter2020/UIMOIBP033