OPF:MMEBESTA Statistics - Course Information
MMEBESTA Statistics
School of Business Administration in KarvinaSummer 2015
- Extent and Intensity
- 0/0. 6 credit(s). Type of Completion: zk (examination).
- Guaranteed by
- prof. RNDr. Jaroslav Ramík, CSc.
Department of Informatics and Mathematics – School of Business Administration in Karvina - Prerequisites (in Czech)
- K absolvování předmětu nejsou vyžadovány žádné podmínky a předmět může být zapsán nezávisla na jiných předmětech.
- Course Enrolment Limitations
- The course is offered to students of any study field.
- Course objectives (in Czech)
- Poskytnout výklad základních pojmů a poznatků matematické a ekonomické statistiky, zvládnout základní statistické metody. Látku prezentovat s ohledem na aplikace v hospodářské oblasti. Navázat na znalosti základních předmětů Kvantitativní metody a Informatiky pro ekonomy, získat příslušné manuální výpočetní dovednosti a také schopnost řešení statistických úloh pomocí Excelu.
- Syllabus (in Czech)
- 1. Statistika a její význam
2. Popisná statistika - kvalitativní znaky
3. Popisná statistika - kvantitativní znaky
4. Pravděpodobnost
5. Náhodná veličina
6. Diskrétní pravděpodobnostní modely
7. Spojité pravděpodobnostní modely
8. Bodové a intervalové odhady
9. Testování statistických hypotéz - parametrické testy
10. Testování statistických hypotéz - neparametrické testy
11. Analýza rozptylu - ANOVA
12. Metody stanovení závislosti
13. Regresní analýza
1. Statistika a její význam
Kdy statistiky "lžou", statistické metody v obchodě a podnikání, oblasti využití statistických metod: popisná statistika, statistická indukce, statistické rozhodování.
2. Popisná statistika - kvalitativní znaky
Statistické znaky, rozdělení četnosti, charakteristiky polohy.
3. Popisná statistika - kvantitativní znaky
Statistické znaky, rozdělení četnosti, charakteristiky polohy, charakteristiky variability, variační koeficient, šikmost.
4. Pravděpodobnost
Intuitivní definice pravděpodobnosti a základní pojmy, kombinatorika, pravděpodobnost jako relativní četnost, vlastnosti pravděpodobnosti.
5. Náhodná veličina
Diskrétní a spojitá náhod. veličina, rozdělení náhodné veličiny, charakteristiky polohy a charakteristiky variability.
6. Diskrétní pravděpodobnostní modely - Modely diskrétních náhodných veličin stejnoměrné rozdělení, binomické rozdělení, Poissonovo rozdělení.
7. Spojité pravděpodobnostní modely
Distribuční funkce, hustota, charakteristiky, stejnoměrné rozdělení, normální rozdělení: grafy, charakteristiky, normované rozdělení, tabulkové hodnoty a kvantily, centrální limitní teorém, Studentovo rozdělení, exponenciální rozdělení.
8. Bodové a intervalové odhady
Výběrové šetření, bodové odhady a jejich vlastnosti, intervaly spolehlivosti pro střední hodnotu, rozptyl a poměr.
9. Testování statistických hypotéz - parametrické testy
Druhy hypotéz, test pro střední hodnotu, jednostranné a oboustranné testy.
10. Testování statistických hypotéz - neparametrické testy
Rozdělení Chí-kvadrát, Pearsonův test dobré shody, test nezávislosti v čtyřpolní tabulce.
11. Analýza rozptylu - ANOVA
ANOVA při jednom faktoru, míra těsnosti závislosti.
12. Metody stanovení závislosti
Stochastická závislost. Jednoduchá lineární regrese.
13. Regresní analýza
Volba regresní funkce, odhady regresních parametrů, koeficient determinace, linearizované regresní funkce.
- 1. Statistika a její význam
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
- Enrolment Statistics (recent)
- Permalink: https://is.slu.cz/course/opf/summer2015/MMEBESTA