INFNKEXS Expert Systems

School of Business Administration in Karvina
Winter 2012
Extent and Intensity
0/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jiří Ivánek, CSc. (lecturer)
Guaranteed by
prof. RNDr. Jiří Ivánek, CSc.
Department of Informatics and Mathematics – School of Business Administration in Karvina
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
V předmětu získají studenti jak teoretické, tak částečně praktické znalosti a vědomosti z vědních disciplín: Umělá inteligence, Expertní systémy, Znalostní systémy. Hlavní důraz je kladen na využití umělé inteligence a expertních systémů pro podporu rozhodování manažera na jednotlivých úrovních řízení (TOP management, střední management a operativní management) v obchodu a marketingu, ekonomice podniku, výrobě. Zároveň v bankovní a finanční sféře a ve veřejném sektoru. Rovněž se studenti seznámí s vybranými prostředky pro vytváření expertních systémů a získávání znalostí jejich dobýváním z databází. Po absolvování předmětu budou studenti disponovat špičkovými moderními znalostmi, které kromě uvedeného, mohou uplatnit u renomovaných domácích i zahraničních poradenských firem.
Syllabus (in Czech)
  • 1. Umělá inteligence.
    2. Oblasti výzkumu umělé inteligence.
    3. Reprezentace znalostí.
    4. Lingvistické proměnné.
    5. Fuzzy množiny.
    6. Programovací jazyky vhodné pro expertní systémy.
    7. Stavový prostor.
    8. Expertní systémy.
    9. Prezentace expertního systému.
    10. Architektura a budování expertního systému.
    11. Expert, expertíza.
    12. Případové studie.
    13. Trendy vývoje expertních systémů.
    1. Umělá inteligence. Historie, základní pojmy, umělá inteligence jako vědní disciplína, informační společnost.
    2. Oblasti výzkumu umělé inteligence. Komerční využití umělé inteligence, problem solving, rozpoznávání, strojové vidění, robotika, porozumění přirozenému jazyku, praktické příklady.
    3. Reprezentace znalostí. Data, informace, znalosti, definice, základní pojmy, zdroje, zpracování, reprezentace znalostí, sémantické sítě, rámce, pravidla IF-THEN, praktické příklady.
    4. Lingvistické proměnné. Definice, základní pojmy, praktické příklady.
    5. Fuzzy množiny. Definice, základní pojmy, praktické příklady.
    6. Programovací jazyky vhodné pro expertní systémy ? LISP. Základy LISPu, praktické příklady.
    7. Programovací jazyky vhodné pro expertní systémy ? PROLOG. Základy PROLOGu, praktické příklady.
    8. Stavový prostor. Definice, základní pojmy, prohledávání stavového prostoru, praktické příklady.
    9. Expertní systémy. Definice, základní pojmy, báze znalostí, báze dat, inferenční mechanizmus, využití expertních systémů v praxi, příklady.
    10. Prezentace expertního systému.
    11. Architektura a budování expertního systému. Postup při budování expertního systému, hardware, software, struktura báze znalostí, druhy atributů, testování, praktické příklady.
    12. Expert, expertíza. Definice, základní pojmy, metody expertíz, heuristiky, praktické příklady.
    13. Případové studie.
Literature
    required literature
  • WOLF, P. Fuzzy Logic in Decission - Making Process. WSEAS PROCEEDINGS, 2007. info
  • FANTA, J. Psychologie, algoritmy a umělá inteligence na kapitálových trzích. GRADA Publishing, spol. s r.o., 2001. ISBN 80-247-0024-7. info
  • VONDRÁK,I. Umělá inteligence a neuronové sítě. Skriptum VŠB-TU Ostrava, 1994. info
  • MAŘÍK,V., ŠTĚPÁNKOVÁ, O., LAŽANSKÝ, a kol. Umělá inteligenceI, II, III. ACADEMIA, 1993. ISBN 80-200-0496-3. info
  • KELEMEN, J. a kol. Základy umelej inteligencie. Bratislava, ALFA, 1992. info
  • TURBAN,E. Decision Support and Expert Systems. Macmillan Publishing Comp. A division of Macmill, 1988. info
  • NOVÁK,V. Fuzzy množiny a jejich aplikace. SNTL, 1986. info
    recommended literature
  • NOVÁK, M., FABER, J., KUFUDAKI, O. Neuronové sítě a informační systémy živých organismů. GRADA a.s. ISBN 80-85424-95-9. info
  • WIDMAN, L. E., LOPARO, K. A., NIELSEN, N. R. Artificial Intelligence, Simulation and Modeling. John Willey & Sons,Inc., 1989. info
  • DAVIS,R., LENART,D. B. Knowledge - Based Systems in Artificial Intelligence. McGraw-Hill, New York, 1982. info
Teaching methods
Skills demonstration
Seminar classes
Assessment methods
Grade
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
Information on the extent and intensity of the course: Přednáška 12 HOD/SEM.
Teacher's information
ActivityDifficulty [h]
Konzultace6
Ostatní studijní zátěž67
Přednáška6
Zkouška40
Summary119
The course is also listed under the following terms Winter 2013.
  • Enrolment Statistics (Winter 2012, recent)
  • Permalink: https://is.slu.cz/course/opf/winter2012/INFNKEXS