MU03030 Reálná analýza II

Matematický ústav v Opavě
léto 2014
Rozsah
2/0/0. 6 kr. Ukončení: zk.
Vyučující
doc. RNDr. Marta Štefánková, Ph.D. (přednášející)
Garance
doc. RNDr. Marta Štefánková, Ph.D.
Matematický ústav v Opavě
Předpoklady
MU03021 Reálná analýza I || MU03028 Reálná analýza I || MU18023 Reálná analýza I
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Náplní přednášky jsou pokročilejší partie z teorie integrálu, diferencovatelnost funkcí a vztah derivací a integrálu.
Osnova
  • Vztah Lebesgueova a Riemannova integrálu
    Vztah mezi měřitelností, integrovatelností a spojitostí
    Zobecnění pojmu integrál; Henstock - Kurzweilův integrál
    Spojitost a diferencovatelnost
    Diferencovatelnost monotonních funkcí
    Body nespojitosti derivace
    Banach - Mazurkiewiczova věta
    Derivace funkce nespojité v bodech husté množiny
    Funkce s konečnou variací
    Absolutně spojité funkce
    Diferencovatelnost v normovaných prostorech
    Aproximace reálných funkcí
    Stone-Weierstrassova věta
Literatura
    doporučená literatura
  • A. M. Bruckner, J. B. Bruckner, B. S. Thomson. Real Analysis. Upper Saddle River, New Jersey, 1997. ISBN 0-13-458886-X. info
  • M. Švec, T. Šalát, T. Neubrunn. Matematická analýza funkcií reálnej premennej. Bratislava, 1987. info
Informace učitele
Podmínkou ukončení předmětu je vykonání zkoušky.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích léto 1998, léto 1999, léto 2000, léto 2001, léto 2002, léto 2003, léto 2004, léto 2005, léto 2006, léto 2007, léto 2008, léto 2009, léto 2010, léto 2011, léto 2012, léto 2013, léto 2015, léto 2016, léto 2017, léto 2018, léto 2019.