MUNMG3 Obyčejné diferenciální rovnice, funkcionální analýza

Matematický ústav v Opavě
léto 2014
Rozsah
0/0. 0 kr. Ukončení: -.
Garance
prof. RNDr. Artur Sergyeyev, Ph.D., DSc.
Matematický ústav v Opavě
Omezení zápisu do předmětu
Předmět je otevřen studentům libovolného oboru.
Cíle předmětu
Ověřit, zda student úspěšně zvládl studovaný obor a získal znalosti a dovednosti potřebné pro případné další studium nebo praxi.
Osnova
  • Obyčejné diferenciální rovnice, funkcionální analýza
    Obyčejné diferenciální rovnice:
    - Systémy diferenciálních rovnic prvního řádu (řešení, věty o existenci a jednoznačnosti řešení).
    - Lineární systémy diferenciálních rovnic (homogenní a nehomogenní systémy, vlastnosti řešení, systémy s konstantními koeficienty, metoda variace konstant, rovnice vyšších řádů).
    Funkcionální analýza:
    - Hahn-Banachova věta a její důsledky.
    - Princip otevřenosti pro Fréchetovy prostory.
    - Princip ohraničenosti pro Fréchetovy prostory.
    - Dualita v Hausdorffových lokálně konvexních topologických vektorových prostorech, slabá a zeslabená topologie.
    - Konvexní analýza v lokálně konvexních topologických vektorových prostorech (základní operátory konvexní analýzy, věta o dualitě).
    - Normované prostory (norma operátoru, duální prostor, Banachova věta o nulovém úhlu, reflexivní prostory, spektrum, kompaktní operátory).
    - Hilbertovy prostory (ortogonální projekce, Hilbertova báze, samoadjungované operátory, příklady, operátory tenzorové mechaniky, Hilbertova-Schmidtova věta).
Literatura
    doporučená literatura
  • V. I. Averbuch. Functional Analysis, pomocné učební texty MÚ SU. MÚ SU, Opava, 1999. info
  • M. Greguš, M. Švec, V. Šeda. Obyčajné diferenciálne rovnice. Alfa-SNTL, Bratislava-Praha, 1985. info
  • A. N. Kolmogorov, S. V. Fomin. Základy teorie funkcí a funkcionální analýzy. Praha, SNTL, 1975. info
  • L. Schwartz. Analyse mathématique II. Herman, Paris, 1967. info
  • L. S. Pontrjagin. Obyknovennyje differenciaľnyje uravnenija. Nauka, Moskva, 1965. info
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2007, léto 2008, zima 2008, léto 2009, zima 2009, léto 2010, zima 2010, léto 2011, zima 2011, léto 2012, zima 2012, léto 2013, zima 2013, zima 2014, léto 2015.