MU:MU01001 Mathematical Analysis I - Course Information
MU01001 Mathematical Analysis I
Mathematical Institute in OpavaWinter 2012
- Extent and Intensity
- 3/0/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Marta Štefánková, Ph.D. (lecturer)
- Guaranteed by
- doc. RNDr. Marta Štefánková, Ph.D.
Mathematical Institute in Opava - Prerequisites (in Czech)
- MU01901 Mathematical Analysis I - Exe || MU01911 Mathematical Analysis I - Exer
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics (programme MU, B1101)
- Astrophysics (programme FPF, B1701 Fyz)
- Mathematical Analysis (programme MU, M1101)
- Mathematics (programme MU, B1101)
- Theoretical Physics (programme FPF, M1701 Fyz)
- Secondary School Teacher Traning in Physics and Mathematics (programme FPF, M1701 Fyz)
- Secondary School Teacher Training in Mathematics (programme FPF, M7504)
- Course objectives
- The course is the first part of the basic course in mathematical analysis. The subject of this course is the one dimensional real function analysis, the main topics are sequences, completeness property, series and local and global behavior of functions.
- Syllabus
- 1. Real numbers and monotone sequences (real numbers, increasing sequences, limit of an increasing sequence, decreasing sequences, completeness property)
2. Estimations and approximations (inequalities, estimations, proving boundedness, absolute values, approximations, the terminology "for n large"
3. The limit of a sequence (definition, uniqueness of limits, infinite limits, limit of a^n)
4. The error term (definition, the error in geometric series)
5. Limit theorems for sequences (limits of sums, products and quotients, comparison theorems, subsequences)
6. The completeness property (nested intervals, cluster points of sequences, the Bolzano - Weierstrass theorem, Cauchy sequences, completeness property for sets)
7. Infinite series (series and sequences, elementary convergence tests, the convergence of series with negative terms, ratio and n-th root tests, the integral test, series with alternating signs - Cauchy's test, rearranging the terms of a series)
8. Power series (definition, radius of convergence, addition of power series, multiplication of power series)
9. Functions of one variable (functions, albebraic operations on functions, some properties of functions, inverse functions, the elementary functions)
10. Local and global behavior (intervals, local behavior, local and global properties of functions)
- 1. Real numbers and monotone sequences (real numbers, increasing sequences, limit of an increasing sequence, decreasing sequences, completeness property)
- Literature
- required literature
- A. P. Mattuck. Introduction to Analysis. Prentice Hall, New Jersey, 1999. info
- recommended literature
- L. Zajíček. Vybrané úlohy z matematické analýzy. Matfyzpress, Praha, 2000. info
- REKTORYS, K. a kol. Přehled užité matematiky I, II. Praha. SNTL, 1995. ISBN 80-85849-92-5. info
- K. Polák. Přehled středoškolské matematiky. SPN, 1991. info
- V. Novák. Diferenciální počet v R. MU, Brno, 1989. info
- F. Jirásek, E. Kriegelstein, Z. Tichý. Sbírka příkladů z matematiky. SNTL, Praha, 1989. info
- R. A. Adams. Single Variable Calculus. Addison-Weseley Publischers Limited, 1983. info
- J. Bečvář. Seznamte se s množinami. SNTL, 1982. info
- L. Leithold. The Calculus with Analytic Geometry. Harper & Row, 1981. info
- S. I. Grossman. Calculus. Academic Press, 1977. info
- V. Jarník. Diferenciální počet I. ČSAV, Praha, 1963. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Teacher's information
- The examination consists of a written and of an oral part.
- Enrolment Statistics (Winter 2012, recent)
- Permalink: https://is.slu.cz/course/sumu/winter2012/MU01001