MU01001 Mathematical Analysis I

Mathematical Institute in Opava
Winter 2020
Extent and Intensity
3/0/0. 5 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Michal Málek, Ph.D. (lecturer)
Guaranteed by
doc. RNDr. Michal Málek, Ph.D.
Mathematical Institute in Opava
Contact Person: Ing. Jana Šindlerová
Timetable
Wed 9:45–12:10 R1
Prerequisites (in Czech)
(NOW( MU01901 Mathematical Analysis I - Exe ) || NOW( MU01911 Mathematical Analysis I - Exer )) && TYP_STUDIA(B)
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The course is the first part of the basic course in mathematical analysis. The subject of this course is the one dimensional real function analysis, the main topics are sequences, completeness property, series and local and global behavior of functions.
Syllabus
  • 1. Real numbers
    2. Topological properties of the reals
    3. Real sequences
    4. Functions.
    5. Continuity.
    6. Limits of functions.
    7. Derivatives.
Literature
    required literature
  • A. P. Mattuck. Introduction to Analysis. Prentice Hall, New Jersey, 1999. info
    recommended literature
  • V. Novák. Diferenciální počet funkcí jedné proměnné. MU, Brno. info
  • L. Zajíček. Vybrané úlohy z matematické analýzy. Matfyzpress, Praha, 2000. info
  • M. Krupka. Pomocné učebny texty. MÚ SU, Opava, 1999. info
  • REKTORYS, K. a kol. Přehled užité matematiky I, II. Praha. SNTL, 1995. ISBN 80-85849-92-5. info
  • J. Štefánek. Matematická analýza I. MÚ SU, Opava, 1993. info
  • K. Polák. Přehled středoškolské matematiky. SPN, 1991. info
  • V. Novák. Diferenciální počet v R. MU, Brno, 1989. info
  • F. Jirásek, E. Kriegelstein, Z. Tichý. Sbírka příkladů z matematiky. SNTL, Praha, 1989. info
  • R. A. Adams. Single Variable Calculus. Addison-Weseley Publischers Limited, 1983. info
  • J. Bečvář. Seznamte se s množinami. SNTL, 1982. info
  • L. Leithold. The Calculus with Analytic Geometry. Harper & Row, 1981. info
  • S. I. Grossman. Calculus. Academic Press, 1977. info
  • V. Jarník. Diferenciální počet I. ČSAV, Praha, 1963. info
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
Teacher's information
The examination consists of a written and of an oral part.
The course is also listed under the following terms Winter 1997, Winter 1998, Winter 1999, Winter 2000, Winter 2001, Winter 2002, Winter 2003, Winter 2004, Winter 2005, Winter 2006, Winter 2007, Winter 2008, Winter 2009, Winter 2010, Winter 2011, Winter 2012, Winter 2013, Winter 2014, Winter 2015, Winter 2016, Winter 2017, Winter 2018, Winter 2019, Winter 2021.
  • Enrolment Statistics (Winter 2020, recent)
  • Permalink: https://is.slu.cz/course/sumu/winter2020/MU01001