UF1U156 Classical Electrodynamics

Faculty of Philosophy and Science in Opava
Summer 2011
Extent and Intensity
4/2/0. 5 credit(s). Type of Completion: zk (examination).
Guaranteed by
doc. RNDr. Stanislav Hledík, Ph.D.
Centrum interdisciplinárních studií – Faculty of Philosophy and Science in Opava
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives (in Czech)
Výklad navazuje zejména na přednášku F 01 100. Maxwellovy rovnice se po krátké rekapitulaci zavádějí axiomaticky (v přednášce F 1U 300 - po vybudování základu 4-vektorové algebry a analýzy, se dodatečně odvozují z variačního principu), další teorie se buduje deduktivním způsobem. Nejprve se přednáší elektrodynamika ve vakuu, v druhé části elektrodynamika v látkovém prostředí. Sylabus (platí pro přednášku i cvičení) Rekapitulace elektromagnetizmu. Coulombův zákon, Ampérův zákon, neexistence magnetického monopólu, Faradayův indukční zákon a jejich zobecnění ve formě Maxwellových rovnic; pojem pole. 1. Klasická elektrodynamika ve vakuu: Úvodní poznámky. O pohybových rovnicích systému { elektromagnetické pole + elektrické náboje } ? Maxwellovy rovnice a pohybové rovnice elektrického náboje. Zákony zachování. Diferenciální a integrální tvar obecné rovnice kontinuity pro tenzorové veličiny; zákony zachování elektrického náboje, energie, hybnosti a momentu hybnosti; ilustrace. Časově neproměnné elektromagnetické pole. Statická a stacionární pole; nezávislost rovnic elektrického a magnetického pole; elektrostatické pole ? Gaussova věta elektrostatiky, potenciál, Laplaceova a Poissonova rovnice, Coulombův zákon, výpočet elektrostatického pole, elektrostatická energie, multipólový rozvoj, dipólový a kvadrupólový moment, systém nábojů ve vnějším poli; siločáry a ekvipotenciály; magnetické pole stacionárního proudu ? vymezení problému, časové středování, vektorový potenciál, Ampérův a Biotův-Savartův zákon, elektrostaticko-magnetická analogie, multipólový rozvoj, magnetický dipólový moment a jeho chování ve vnějším magnetickém poli; siločáry. Časově proměnné pole. Elektromagnetické potenciály, kalibrační transformace a kalibrační invariance, Lorentzova a Coulombova kalibrace, Lorentzova podmínka, vlnové rovnice homogenní a nehomogenní; homogenní vlnová rovnice ? rovinná elektromagnetická vlna, její struktura a vlastnosti, energie a hybnost, tlak záření, monochromatická rovinná vlna, polarizace, částečně polarizované světlo, vlastní kmity elektromagnetického pole, šíření elektromagnetických vln (sférická a cylindrická vlna, geometrická optika, eikonál, intenzita, vlnová optika, difrakce; nehomogenní vlnová rovnice (pole pohybujících se nábojů) ? řešení, retardované a advancované potenciály, pole pohybujícího se bodového náboje (Liénardovy-Wiechertovy potenciály), zářivé a nezářivé pole, pole rovnoměrné přímočaře se pohybujícího bodového náboje; vyzařování elektromagnetických vln ? pole ohraničené soustavy nábojů ve velké vzdálenosti, vlnová zóna, elektrické dipólové záření, magnetické dipólové záření, elektrické kvadrupólové záření, zářivý výkon, pole v blízké zóně. Dynamika elektrického náboje v elektromagnetickém poli. Řešení pohybové rovnice elektrického náboje v nerelativistické aproximaci; rozptyl elektromagnetických vln na volných nábojích, účinný průřez rozptylu, Thomsonova formule; brzdné záření. 2. Klasická elektrodynamika v látkovém prostředí: Lorentzova teorie. Základy elektronové teorie; středování mikroskopických veličin; Lorentzovy rovnice. Maxwellovy rovnice v látkovém prostředí. Klasifikace prostředí (dielektrika, vodivá), polarizace, polarizační proud, elektrická indukce; magnetizace, magnetizační proud, magnetická indukce a intenzita; hraniční podmínky; Ohmům zákon. Elmag jevy v látkovém prostředí. Vymezení platnosti, zákony zachování, elektrostatické a magnetostatické pole, elektromagnetické vlny. Šíření elmag vln v látkovém prostředí. Vlnová a telegrafní rovnice, odraz a lom na dielektrickém rozhraní, Fresnelovy vzorce; odraz na kovech; vlny v nehomogenním prostředí, vln
Language of instruction
Czech
Further Comments
The course can also be completed outside the examination period.
The course is also listed under the following terms Summer 1994, Summer 1995, Summer 1996, Summer 1997, Summer 1998, Summer 1999, Summer 2000, Summer 2001, Summer 2002, Summer 2003, Summer 2004, Summer 2005, Summer 2006, Summer 2007, Summer 2008, Summer 2009, Summer 2010, Summer 2012, Summer 2013, Summer 2014, Summer 2015, Summer 2016, Summer 2017, Summer 2018, Summer 2019, Summer 2020, Summer 2021.
  • Enrolment Statistics (Summer 2011, recent)
  • Permalink: https://is.slu.cz/course/fpf/summer2011/UF1U156