UIN1007 Úvod do logiky

Filozoficko-přírodovědecká fakulta v Opavě
léto 2018
Rozsah
2/2/0. 6 kr. Ukončení: zk.
Vyučující
doc. RNDr. Luděk Cienciala, Ph.D. (přednášející)
doc. RNDr. Lucie Ciencialová, Ph.D. (cvičící)
Mgr. Marek Menšík, Ph.D. (cvičící)
Garance
doc. RNDr. Luděk Cienciala, Ph.D.
Ústav informatiky – Filozoficko-přírodovědecká fakulta v Opavě
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Obsahem předmětu je výroková logika a predikátová logika prvího řádu.
Osnova
  • - Úvod do logiky, symbolický jazyk, speciální a logické symboly.
    - Výroková logika. Jazyk výrokové logiky (abeceda a gramatika). Definice spojek výrokové logiky převod z přirozeného jazyka do symbolického jazyka výrokové logiky. Sémantika výrokové logiky: pravdivostní ohodnocení, tautologie, kontradikce, splnitelnost; výrokově logické vyplývání; sémantické metody výrokové logiky, rozhodnutelnost problému logické pravdivosti. Úplný systém spojek výrokové logiky: věta o reprezentaci; normální formy formulí výrokové logiky; věty o funkční úplnosti; logické důsledky množiny formulí.
    - Predikátová logika prvního řádu. Správné úsudky, které nelze analyzovat na základě výrokové logiky. Jazyk predikátové logiky 1. řádu. Volné a vázané proměnné, substituovatelnost termů za proměnné. Sémantika predikátové logiky 1. řádu. Převod z přirozeného jazyka do symbolického jazyka predikátové logiky. Splnitelnost formulí, logická pravdivost, kontradikce. Logické vyplývání. Tautologie predikátové logiky 1. řádu. Tradiční Aristotelova logika.
Literatura
    doporučená literatura
  • ing M. Copi, Carl Cohen, Kenneth McMahon. Introduction to Logic. Routledge, 2013. ISBN 9780205820375. info
  • Švejdar, V. Logika: neúplnost, složitost a nutnost. Praha, Academia, 2002. info
  • Sochor, A. Klasická matematická logika. Praha, Univerzita Karlova, 2001. info
  • Štěpánek, P. Matematická logika. Prraha, Univerzita Karlova, 2000. info
  • Jirků, P., Vejnarová, V. Neformální výklad základů formální logiky. VŠE Praha, 2000. URL info
  • Lukasová, A.:. Logické základy umělé inteligence I. Ostrava, 1999. info
  • Gahér, F. Logika pro každého. Bratislava, IRIS, 1998. info
  • Gahér, F. Logické hádanky a paradoxy. Bratislava, IRIS, 1997. info
  • Štěpán, J. Logika a logické systémy. Olomouc, Votobia, 1992. info
  • Manna, Z. Matematická teorie programů. Praha, SNTL, 1981. info
Výukové metody
Přednáška s aktivizací
Přednáška s analýzou videozáznamu
Metody hodnocení
Zkouška
Informace učitele
Zápočet: Studenti denního studia píšou na cvičení dva zápočtové testy - 20 bodů každý.
Zkouška: Celkem za zkoušku může student získat 60 bodů. Pro úspěšné absolvování studenti potřebují získat 30 bodů. Známka pro prezenční studium je určena součtem bodů za zkoušku a z testů, které student psal v průběhu semestru ve cvičení. Známka pro kombinované studium se určí z bodů získaných ze zkouškového testu.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích léto 1994, léto 1995, léto 1996, léto 1997, léto 1998, léto 1999, léto 2000, léto 2002, léto 2003, léto 2004, léto 2005, léto 2006, léto 2007, léto 2008, léto 2009, léto 2010, léto 2011, léto 2012, léto 2013, léto 2014, léto 2015, léto 2016, léto 2017, léto 2019, léto 2020, léto 2021, léto 2022, léto 2023.