FPF:UFMM013 Matematika II - Informace o předmětu
UFMM013 Matematika II
Filozoficko-přírodovědecká fakulta v Opavěléto 2022
- Rozsah
- 2/3/0. 6 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. Jiří Kovář, Ph.D. (přednášející)
doc. RNDr. Jiří Kovář, Ph.D. (cvičící) - Garance
- doc. RNDr. Jiří Kovář, Ph.D.
Centrum interdisciplinárních studií – Filozoficko-přírodovědecká fakulta v Opavě - Předpoklady
- Vhodné je předem absolvovat předmět Matematika I.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Multimediální techniky (program FPF, B1702 AplF)
- Cíle předmětu
- Předmět umožňuje posluchačům seznámit se základy lineární algebry a analytické geometrie. Důraz je zde kladen na zvládnutí základních početních technik, řešení úloh a praktické aplikace. Probírané definice a věty tak slouží pouze k základní orientaci posluchačů v dané problematice bez záměru objasnění hlubších teoretických souvislostí a podrobnější detailů. Předmět si tak klade za cíl upevnit znalosti posluchačů v některých náročnějších partiích středoškolské gymnaziální matematiky a vytvořit nad nimi základní nástavbu, jakožto nezbytnou matematickou průpravu pro orientaci ve fyzikálních předmětech tvořící součást dalšího studia.
- Výstupy z učení
- Osnova
- 1) Základy matematické logiky a teorie množin:
výrok, pravdivostní hodnota, logické spojky, složené výroky, nutná podmínka a postačující podmínka, výroková forma, kvantifikátory, důkazy v matematice, množina, prvek množiny, prázdná množina, rovnost a průnik množin, podmnožina, doplněk, sjednocení a rozdíl množin.
2) Relace, zobrazení a algebraické struktury:
uspořádaná dvojice, kartézský součin, binární relace, relace reflexivní, symetrická, antisymetrická a tranzitivní, n-arní relace, zobrazení, definiční obor, obor hodnot, injekce, surjekce, bijekce, inverzní relace a zobrazení, n-arní operace, binární operace, algebraická struktura, grupoid, pologrupa, grupa.
3) Matice a determinanty:
matice, základní typy matic, rovnost matic, sčítání matic, násobení matic skalárem, násobení matic, transponování matic, permutace množiny, determinant čtvercové matice, základní vlastnosti determinantů, submatice, subdeterminant, algebraický doplněk, Laplaceova věta, inverzní matice, matice adjungovaná, hodnost matice, matice ve schodovitém tvaru, maticové rovnice.
4) Soustavy lineárních rovnic:
aritmetický sloupcový a řádkový vektor, soustava m rovnic o n neznámých, Frobeniova věta, Cramerovo pravidlo, ekvivalentní úpravy soustavy rovnic, Gaussova eliminační metoda, homogenní soustava rovnic.
5) Vektorový počet:
vektor volný a vázaný, souřadnice vektoru, směrové úhly, součet vektorů, násobení vektoru skalárem, vektorový prostor (podprostor), opačný vektor, nulový vektor, lineární kombinace vektorů, vektory lineárně závislé a nezávislé, báze vektorového prostoru, kanonická báze, matice přechodu, skalární součin, Euklidovský vektorový prostor, vektorový součin, smíšený součin, dvojný součin, velikost vektoru, úhel dvou nenulových vektorů.
6) Analytická geometrie:
rovnice přímky v rovině, vzájemná poloha dvou přímek, odchylka přímek, vzdálenost bodu od přímky, vzdálenost přímek, rovnice roviny a přímky v prostoru, vzájemné polohy rovin a přímek, vzájemná poloha přímky a roviny, vzdálenosti bodu od přímky a roviny, vzdálenosti rovin a přímek, vzdálenost přímky od roviny, odchylky rovin, přímek a přímek od rovin, rovnice kružnice, elipsy, paraboly a hyperboly, vzájemné polohy přímek a kuželoseček, průsečíky, tečna ke kružnici.
- 1) Základy matematické logiky a teorie množin:
- Literatura
- doporučená literatura
- M. Kočandrle - L. Boček. Matematika pro gymnázia - Analytická geometrie. info
- I. Bušek - L. Boček - E. Calda. Matematika pro gymnázia - Základní poznatky z matematiky. info
- J. Polák. Přehled středoškolské matematiky. info
- K. Rektorys a spol. Přehled užité matematiky I. ISBN 80-85849-92-5. info
- J. Polák. Středoškolská matematika v úlohách I, II. info
- Klíč A. Matematika I ve strukturovaném studiu. 1. vyd. 2004. ISBN 80-7080-549-8. info
- L. Bican. Lineární algebra a geometrie. Academia Praha, 2000. ISBN 80-200-0843-8. info
- Výukové metody
- Metody hodnocení
- Informace učitele
- Podmínky pro udělení zápočtu:
Získání aspoň 15 bodů ze dvou zápočtových písemných prací a z aktivity na cvičeních dohromady. Při každé zápočtové písemné práci budou mít studenti možnost získat maximálně 10 bodů; aktivita na cvičeních bude hodnocena 0-10 body.
Podmínky pro úspěšné absolvování zkoušky:
Pro úspěšné absolvování zkoušky je nutné získat aspoň 50 bodů, které mají studenti možnost získat:
1. z aktivity na cvičeních (max. 10 bodů),
2. ze zápočtových písemných prací (max. 20 bodů),
3. z písemné části zkoušky (max. 60 bodů),
4. z ústní části zkoušky (max. 10 bodů), která následuje po odevzdání písemné části. - Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (léto 2022, nejnovější)
- Permalink: https://is.slu.cz/predmet/fpf/leto2022/UFMM013