FPF:UF1U054 Teoretická mechanika - Informace o předmětu
UF1U054 Teoretická mechanika
Filozoficko-přírodovědecká fakulta v Opavězima 2011
- Rozsah
- 4/2/0. 5 kr. Ukončení: zk.
- Vyučující
- doc. RNDr. Stanislav Hledík, Ph.D. (přednášející)
doc. RNDr. Stanislav Hledík, Ph.D. (cvičící) - Garance
- doc. RNDr. Stanislav Hledík, Ph.D.
Centrum interdisciplinárních studií – Filozoficko-přírodovědecká fakulta v Opavě - Předpoklady
- UFAF001 Mechanika a molekulová fyzika || UF01000 Mechanika a molekulová fyzika
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Astrofyzika (program FPF, B1701 Fyz)
- Obecná matematika (program MU, B1101)
- Učitelství fyziky-matematiky pro SŠ (program FPF, M1701 Fyz)
- Cíle předmětu
- Přednáška seznamuje se základy nerelativistické klasické dynamiky diskrétních a spojitých mechanických systémů. Po úvodní rekapitulaci elementární mechaniky a jejím zobecnění na diskrétní systémy s vazbami se výklad odvíjí z variačních principů. Kromě partií teoretického charakteru jsou zařazeny důležité aplikace a příklady ilustrující rozvíjené teoretické metody. Sylabus (platí pro přednášku i cvičení) Rekapitulace newtonovské mechaniky? Kinematika, souřadnice; Newtonovy zákony, Galileiho princip relativity, superpozice, actio in distans, zákony zachování; prostor, čas a hmotnost v Newtonově mechanice; Machův princip ?a její aplikace na systémy s vazbami. Vazby, jejich klasifikace, obecné souřadnice, konfigurační prostor, počet stupňů volnosti; princip virtuálních prací a d?Alembertův princip, Lagrangeovy rovnice I. a II. druhu, lagrangián; zákony zachování; disipativní systémy. Variační princip poprvé? Motivace; Hamiltonův princip, akce, Eulerovy-Lagrangeovy rovnice (Lagrangeovy rovnice II. druhu) a jejich vlastnosti; vlastnosti lagrangiánu, konstrukce lagrangiánu a jeho struktura; zákony zachování, symetrie, teorém Noetherové; význam variační formulace. Hamiltonův formalismus. Sdružené proměnné, Legendreova transformace, fázový prostor, hamiltonián a jeho struktura, Hamiltonovy kanonické rovnice pohybu a jejich vlastnosti, cyklické souřadnice a Routhova metoda; zákony zachování a fyzikální význam hamiltoniánu. ?podruhé? Modifikovaný Hamiltonův princip ? odvození Hamiltonových kanonických rovnic z variačního principu. Kanonické transformace. Definice kanonické transformace, generující funkce, příklady na kanonické transformace, Poincarého integrální invarianty, Poissonovy závorky, infinitesimální kanonické transformace, Liouvilleův teorém. Hamiltonova-Jacobiho teorie. Hamiltonova-Jacobiho rovnice a její interpretace, ilustrace (harmonický oscilátor,?), Hamiltonova charakteristická funkce, separace proměnných; geometrická a vlnová mechanika. Aplikace. Malé kmity s jedním a více stupni volnosti, rezonance; problém dvou těles, pohyb ve sféricky symetrickém poli, Keplerova úloha, elementární nebeská mechanika, klasická teorie rozptylu; pohyb tělesa s proměnnou hmotou; pohybové rovnice v neinerciálním systému; mechanická podobnost, viriálový teorém. Pohyb tuhého tělesa. Kinematika tuhého tělesa; dynamika tuhého tělesa jako speciální případ dynamiky soustavy hmotných bodu, tensor momentu setrvačnosti, hlavní osy a hlavní momenty setrvačnosti, Eulerovy dynamické rovnice; Lagrangeův formalismus; klasifikace tuhých těles (setrvačníku) podle hlavních momentů setrvačnosti, rozbor pohybu setrvačníku volných i ve vnějším poli, precese, nutace. Základní pojmy mechaniky kontinua. Přechod od diskrétního ke spojitému systému, rozklad pohybu kontinua na translaci, rotaci a deformaci, matematický aparát pro popis kontinua; tensor konečných a malých deformací; tensor napětí; obecné úvahy o rovnici kontinuity. Základy teorie pružnosti. Zobecněný Hookeův zákon, symetrie, isotropní pružné prostředí a jeho charakteristiky; okrajové úlohy; příklady (vlny v isotropním pružném prostředí, ohyb nosníku, torze tyče aj.). Základy hydrodynamiky. Hydrostatika; proudnice, proudění vířivé a nevířivé, Helmholtzovy věty; dynamika ideální tekutiny ? Eulerovy rovnice, rovnice kontinuity a termodynamické podmínky, Bernoulliho rovnice; dynamika viskózní tekutiny ? tok hybnosti ve viskózní tekutině, Navierovy-Stokesovy rovnice, viskozita, disipace energie, termodynamika proudění, hydrodynamická podobnost; okrajové úlohy, příklady ? vlny v tekutině, některá další řešení rovnic dynamiky ideální tekutiny; některá řešení Navierových-Stokesových rovnic pro malé Reynoldsovo číslo; turbulen
- Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2011, nejnovější)
- Permalink: https://is.slu.cz/predmet/fpf/zima2011/UF1U054