FPF:UIN1004 Graph Theory - Course Information
UIN1004 Graph Theory
Faculty of Philosophy and Science in OpavaWinter 2014
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Luděk Cienciala, Ph.D. (lecturer)
doc. RNDr. Luděk Cienciala, Ph.D. (seminar tutor)
Mgr. Martina Foldynová (seminar tutor)
Mgr. Adam Kožaný (seminar tutor)
Mgr. Marek Menšík, Ph.D. (seminar tutor)
RNDr. Michal Perdek (seminar tutor) - Guaranteed by
- doc. RNDr. Luděk Cienciala, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Computer Science (programme FPF, B1802 AplI)
- Applied Mathematics (programme MU, B1101)
- Applied Mathematics in Risk Management (programme MU, B1101)
- Computer Science and Technology (programme FPF, B1801 Inf)
- Mathematical Analysis (programme MU, M1101)
- Mathematical Methods in Economics (programme MU, B1101)
- Mathematics (programme MU, B1101)
- Secondary School Teacher Training in Computer Science (programme FPF, M7504)
- Course objectives
- In this course students learn the basic concepts of the proving techniques and possible applications of graph theory.
- Syllabus (in Czech)
- 1. Grafy a jednoduché grafy, stupeň vrcholu.
2. Podgrafy, reprezentace grafů pomocí matic, cesty, cykly, dosažitelnost, souvislost, souvislé, nesouvislé grafy, vzdálenost v grafu, excentricita vrcholu, průměr a poloměr grafu.
3. Stromy, třídy grafů.
4. Další třídy grafů - kompletní grafy, bipartitní a multi-partitní grafy, izomorfismus, automorfismus. Vrcholová a hranová souvislost, bloky.
5. Párování, pokrytí, hranové barvení grafů, párování a pokrytí v bipartitních grafech, algoritmus hledající nesaturované alternující cesty.
6. Vrcholové barvení grafů, planární grafy.
7. Problém 4 barev, Neplanární grafy, Eulerovské grafy, Úlohy typu bludiště - Tarryho algoritmus, Trémauxův algoritmus.
8. Hamiltonovské grafy, orientované grafy.
9. Orientované grafy, turnaje, sítě, toky a řezy.
10. Algoritmus nalezení minimální kostry grafu, Primův algoritmus, Kruskalův, Obecné schéma prohledávání grafu - značkování vrcholů.
11. Prohledávání grafů do šířky, do hloubky, Backtracking.
- 1. Grafy a jednoduché grafy, stupeň vrcholu.
- Literature
- recommended literature
- Fronček, D. Úvod do teorie grafů. Opava, FPF SU, 2000. info
- Bollobas, B. Modern Graph Theory. New York, Springer, 1998. info
- Diestel, R. Graph Theory. New York, Springer, 1997. info
- Demel, J. Grafy. Praha, SNTL, 1988. info
- Kolář, J. Grafy. Praha, ČVUT, 1984. info
- Kolář, J. Grafy - cvičení. Praha, ČVUT, 1984. info
- Bosák, J. Grafy a ich aplikácie. Bratislava, Alfa, 1980. info
- Behzad, M., Chartrand, G. Graphs and Digraphs. Weber, Schmidt, 1979. info
- Bondy, J. A. Graph Theory with Applications. The Macmillan Press, 1976. info
- Language of instruction
- Czech
- Further Comments
- The course can also be completed outside the examination period.
- Teacher's information
- Credit: full-time students wrote the exercises two credit tests scoring 20 points each.
Exam: Total of examination exam can earn 60 points. For the successful completion students need to get 30 points. Mark for full-time study is determined by adding the points for the exam and points that the student earned during the semester in the course. Mark the combined study is determined from the points gained from examination test.
- Enrolment Statistics (Winter 2014, recent)
- Permalink: https://is.slu.cz/course/fpf/winter2014/UIN1004