INMDAMMA Mathematical-Statistical Methods

Obchodně podnikatelská fakulta v Karviné
léto 2017
Rozsah
Přednáška 32 HOD/SEM. 15 kr. Ukončení: dzk.
Vyučující
prof. RNDr. Jiří Ivánek, CSc. (přednášející)
prof. RNDr. Jaroslav Ramík, CSc. (přednášející)
prof. RNDr. Josef Tošenovský, CSc. (přednášející)
Garance
doc. RNDr. Ing. Roman Šperka, Ph.D.
Katedra informatiky a matematiky – Obchodně podnikatelská fakulta v Karviné
Kontaktní osoba: prof. RNDr. Jaroslav Ramík, CSc.
Předpoklady
K absolvování předmětu nejsou vyžadovány žádné podmínky a předmět může být zapsán nezávisle na jiných předmětech.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
V návaznosti na základní předmět statistiky a operační analýzy z magisterského studia poskytnout výklad moderních matematicko-statistických metod, metod vícekriteriálního rozhodování a znalostního inženýrství. Látku prezentovat s ohledem na aplikace v ekonomické oblasti, zejména marketingu a managementu a financích. Cílem je také získání příslušných výpočetních dovedností s adekvátními softwarovými prostředky na počítači PC. Výuka se uskutečňuje ve výpočetní laboratoři vybavené moderní výpočetní technikou s příslušným programovým vybavením (Excel, SPSS, Expert Choice aj.). Pro účely studia předmětu je zpracován v systému Moodle eLearningový kurz. V průběhu studia předmětu studenti zpracují samostatně 3 zadané úkoly.
Osnova
  • 1. Statistické metody analýzy ekonomických dat a řízení jakosti
    2. Ekonometrické modelování
    3. Analýza ekonomických časových řad
    4. Vícekriteriální rozhodování
    5. Metody znalostního inženýrství a data mining

    1. Statistické metody analýzy ekonomických dat a řízení jakosti
    Vícerozměrná pozorování a úpravy datové matice. Vícerozměrná analýza rozptylu (ANOVA). Základy plánování experimentů. Vícerozměrná regresní a korelační analýza. Analýza hlavních komponent. Faktorová analýza. Problémy předvýrobní etapy. Řízení kvality výrobního procesu. Hodnocení výrobního procesu.
    2. Ekonometrické modelování
    Odhad klasického lineárního regresního modelu. Speciální problémy lineárního regresního modelu (umělé proměnné, specifikační chyby, zobecněný model). Modely obsahující zpožděné proměnné. Modely diskrétní volby. Modely simultánně závislých rovnic. Případové studie s využitím PC.
    3. Analýza ekonomických časových řad
    Význam, základní přístupy a specifické problémy analýzy časových řad. Dekompozice časových řad. Box - Jenkinsova metodologie: ARIMA a SARIMA modely. Modely vícerozměrných časových řad typu VARMA. Kointegrace časových řad a modely typu Error-Correction. Řešení samostatného úkolu z analýzy časových řad pomocí modelu SARIMA s využitím SPSS.
    4. Vícekriteriální rozhodování
    Vícekriteriální metody rozhodování. Analytický hierarchický proces ? AHP. Metody rozhodování za neurčitosti a rizika. Využití programů Excel a Expert Choice při řešení úloh vícekriteriálního rozhodování. Řešení samostatného úkolu z vícekriteriálního rozhodování s využitím programu Expert Choice.
    5. Metody znalostního inženýrství a data mining
    Typické úlohy pro znalostní inženýrství a dolování z datových bází. Obecná metodologie, otázky, cíle, aplikace. Expertní a znalostní systémy. Principy metod ZI a DM: neuronové sítě, indukční pravidla, asociační pravidla, seskupovací metody, statistické modely, vizualizace. Vytváření modelů, praktické aplikace.
Literatura
    doporučená literatura
  • RUD, O. Data mining. Praha: Computer Press, 2001. ISBN 80-7226-577-6. info
  • POLLOCK, DGS. A Handbook of Time-Series Analysis, Signal Processing and Dynamics. San Diego - London - Boston - New York: Academic, 1999. ISBN 0-12-560990-6. info
  • ENDERS, W. Applied Economic Time Series. New York etc.: John Wiley&Sons, 1995. ISBN 0-314-77818-7. info
  • BERENSON, M., LEVINE, M. Basic Business Statistics, Concepts and Applications. New Jersey: Prentice Hall, 1992. ISBN 0-13-065780-8. info
  • GURAJATI, D. Essentials of econometrics. New York: McGraw-Hill, 1992. ISBN 0-13-844143-X. info
Výukové metody
Individuální konzultace
Demonstrace dovedností
Metody hodnocení
Písemná zkouška
Vyučovací jazyk
Angličtina
Informace učitele
samostatné zpracování příkladů, forma zkoušky: písemná
AktivityNáročnost [h]
Ostatní studijní zátěž346
Přednáška72
Zkouška32
Celkem450
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích léto 2018, léto 2019, zima 2022.