FIUBKFPM Finanční a pojistná matematika

Obchodně podnikatelská fakulta v Karviné
zima 2023
Rozsah
12/0/0. Přednáška 12 HOD/SEM. 5 kr. Ukončení: zk.
Vyučující
Ing. Roman Hlawiczka, Ph.D. (přednášející)
Garance
Ing. Roman Hlawiczka, Ph.D.
Katedra financí a účetnictví – Obchodně podnikatelská fakulta v Karviné
Kontaktní osoba: Ing. Irena Szarowská, Ph.D., MPA
Rozvrh
So 14. 10. 13:55–15:30 A217, Pá 10. 11. 15:30–17:10 A217, Pá 8. 12. 15:30–17:10 A217
Předpoklady
FAKULTA(OPF) && TYP_STUDIA(B) && FORMA(K)
K absolvování předmětu nejsou vyžadovány žádné podmínky a předmět může být zapsán nezávisle na jiných předmětech.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Předmět si smí zapsat nejvýše 30 stud.
Momentální stav registrace a zápisu: zapsáno: 14/30, pouze zareg.: 0/30
Mateřské obory/plány
Cíle předmětu
Cílem předmětu je seznámit posluchače s pojmy a matematickými aplikacemi pro oblast financí a pojišťovnictví a ukázat, jak finanční a pojistná matematika vstupuje do interakce s matematickou ekonomií, ekonometrií a ekonomickou statistikou.
Výstupy z učení
Student bude po absolvování předmětu znát základní výpočty finanční a pojistné matematiky. Bude se orientovat zejména ve výpočtech současné a budoucí hodnoty, výpočtu spoření, úročení, důchodů či hodnocení základních cenných papírů.
Osnova
  • 1. Základní pojmy finanční a pojistné matematiky
    2. Jednoduché úročení
    3. Krátkodobé cenné papíry
    4. Složené úročení
    5. Úroková míra
    6. Dlouhodobé cenné papíry
    7. Spoření
    8. Důchody
    9. Modely opakovaných plateb
    10. Riziko ve finanční matematice
    11. Životní pojištění
    12. Neživotní pojištění
    13. Zdravotní a důchodové pojištění

    1. Základní pojmy finanční a pojistné matematiky
    Historie pojistné matematiky a její vývoj. Obsah a vysvětlení souvisejících pojmů. Uvedení matematických pojmů do souvislosti s finanční matematikou.
    2. Jednoduché úročení
    Metody a typy úročení. Základní rovnice jednoduchého úročení. Diskont. Vztah mezi úrokovou sazbou a diskontní sazbou.
    3. Krátkodobé cenné papíry
    Krátkodobé cenné papíry, příklady a definice těchto cenných papírů.
    4. Složené úročení
    Základní rovnice složeného úročení. Porovnání jednoduchého a složeného úročení. Výpočet doby splatnosti při složeném úročení, současné hodnoty a úrokové míry.
    5. Úroková míra
    Úroková míra a faktory, které ovlivňují úrokovou míru. Efektivní úroková míra, nominální a reálná úroková míra. Časová hodnota peněz.
    6. Dlouhodobé cenné papíry
    Dluhopisy, akcie. Durace, cena a kurz dluhopisu, cena a kurz akcie, předkupní právo.
    7. Spoření
    Krátkodobé a dlouhodobé spoření, výpočty pro spoření polhůtní a předlhůtní. Kombinace krátkodobého a dlouhodobého spoření, podmínky pro aplikaci.
    8. Důchody
    Důchod a jeho klasifikace. Důchod bezprostřední, odložený, věčný, předlhůtní a polhůtní, důchod dočasný a důchod věčný. Výpočty pro všechny typy důchodů.
    9. Modely opakovaných plateb
    Užití teorie důchodů pro modely půjček a jejich splácení a spoření. Umořování dluhu.
    10. Riziko ve finanční matematice
    Riziko a klasifikace rizik. Finanční riziko a jeho definice. Finanční portfolio a jeho analýza. Analýza míry rizika.
    11. Životní pojištění
    Princip ekvivalence, počáteční hodnota pojištění pro případ dožití, smrti, smíšené pojištění, pojištění důchodu. Jednorázové a běžné netto pojistné, brutto pojistné. Úmrtnostní tabulky. Pojistně technické rezervy v životním pojištění.
    12. Neživotní pojištění
    Statistické podklady a ukazatele v neživotním pojištění. Pojistné plnění a jeho výpočetní aspekty. Kalkulace pojistného. Pojistně technické rezervy v neživotním pojištění.
    13. Zdravotní a důchodové pojištění
    Zdravotní a důchodové pojištění a výpočet pojistného z pohledu pojistné matematiky.
Literatura
    povinná literatura
  • RADOVÁ, J., DVOŘÁK, P., MÁLEK, J. Finanční matematika pro každého. Praha : GRADA Publishing, 2009. ISBN 978-80-247-3291-6. info
  • CIPRA, T. Praktický průvodce finanční a pojistnou matematikou. Praha: Ekopress, 2005. ISBN 80-86119-91-2. info
    doporučená literatura
  • CAPINSKI, M., ZASTAWNIAK, T. Mathematics for Finance: An Introduction to Financial Engineering. Berlin, 2010. ISBN 978-0857290816. info
  • CIPRA, T. Pojistná matematika: teorie a praxe. Praha: EKOPRESS, 2006. ISBN 80-86929-11-6. info
  • RADOVÁ, J., CHÝNA, V., MÁLEK, J. Finanční matematika v příkladech. Praha: Professional Publishing,, 2005. ISBN 80-86419-97-5. info
  • SEKERKA, B. Matematické a statistické metody ve financování, cenných papírech a pojištění. Praha: Profess consulting, 2002. ISBN 80-7259-031-5. info
    neurčeno
  • ŠLECHTOVÁ, J. Finanční a pojistná matematika. Karviná SU OPF, 2005. ISBN 80-7248-336-6. info
Výukové metody
Demonstrace dovedností
Seminární výuka
Metody hodnocení
Písemná zkouška
Informace učitele
Požadavky na studenta: průběžné testy
Hodnotící metody: 2 průběžné testy (2 x 20 % = 40 % hodnocení)), písemná zkouška (60 % hodnocení)

AktivityNáročnost [h]
Ostatní studijní zátěž76
Přednáška13
Seminář26
Zápočet30
Celkem145
Další komentáře
Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2015, zima 2016, zima 2017, zima 2018, zima 2019, zima 2020, zima 2022, zima 2024.