MU:MU02036 Math. Methods in Physic Eng. I - Course Information
MU02036 Mathematical Methods in Physics and Engineering II
Mathematical Institute in OpavaSummer 2019
- Extent and Intensity
- 2/2/0. 6 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- RNDr. Oldřich Stolín, Ph.D. (lecturer)
RNDr. Oldřich Stolín, Ph.D. (seminar tutor) - Guaranteed by
- RNDr. Oldřich Stolín, Ph.D.
Mathematical Institute in Opava - Prerequisites (in Czech)
- MU02034 Methods in Physics and Enginee || MU02035 Math. Methods in Physic Eng. I
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Applied Mathematics (programme MU, B1101)
- Applied Mathematics (programme MU, N1101)
- Mathematics (programme MU, B1101)
- Course objectives
- The course covers parts of the demands for the final examination for the specialization Applied Mathematics the program Mathematics.
- Syllabus
- - variational calculus; variational functionals, lagrangian mechanics, Lagrange multipliers,
- function spaces; norms, inner products, operators, distributions,
- linear ordinary differential equations; existence and uniqueness of solutions, normal form, non-homegeneity, singularity,
- linear differential operators; formal operator and its extensions, adjoint operator, completeness of eigenfunctions,
- Green's functions; nonhomogeneous linear differential equations, construction of Green's functions, use of the Lagrange identity, eigen-function expansion, analytic properties, Gelfand-Dikii equation,
- linear partial differential equations; classification of second order equations, Cauchy conditions, wave equations, heat equation, Laplace equation,
- the mathematics of waves, waves in dispersive media, creation of waves, nonlinear waves, solitons,
- special functions; curvilinear coordinate systems, spheric harmonics, Bessel functions, Weyl theorem,
- dynamical systems; autonomous and nonautonomous systems, their relationship and best known special cases,
- one-dimensional digital filters; Nyiquist teorém, Heisenberg relations, linear and nonlinear examples,
- linear integral equations; classification, integral transforms, separable kernels, singular equations.
- - variational calculus; variational functionals, lagrangian mechanics, Lagrange multipliers,
- Literature
- required literature
- Stone M. Mathematics for Physics I. Alexandria, Pimander-Casaubon, 2002. info
- recommended literature
- Smékal Z., Vich R. Číslicové filtry. Praha, Academia, 2000. info
- Pierre N. V. Dynamical Systems. Berlin, Springer, 1994. info
- Dettman, J. W. Matematické metody ve fyzice a technice. Academia, Praha, 1970. info
- not specified
- J. Segethová. Základy numerické matematiky. Karolinum, Praha, 1998. ISBN 80-7184-596-5. info
- VITÁSEK, E. Numerické metody. SNTL, Praha, 1987. info
- Z. Riečanová a kol. Numerické metody a matematická štatistika. Alfa, Bratislava, 1987. ISBN 063-559-87. info
- K. Rektorys a spolupracovníci. Přehled užité matematiky. SNTL, Praha, 1968. info
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- The course can also be completed outside the examination period.
- Enrolment Statistics (Summer 2019, recent)
- Permalink: https://is.slu.cz/course/sumu/summer2019/MU02036