MU18024 Real Analysis II

Mathematical Institute in Opava
Summer 2021
Extent and Intensity
2/2/0. 6 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Jaroslav Smítal, DrSc. (lecturer)
Mgr. Vojtěch Pravec, Ph.D. (seminar tutor)
Guaranteed by
doc. RNDr. Michaela Mlíchová, Ph.D.
Mathematical Institute in Opava
Timetable
Wed 10:35–12:10 5
  • Timetable of Seminar Groups:
MU18024/01: Thu 11:25–13:00 RZ, V. Pravec
Prerequisites (in Czech)
MU18023 Real Analysis I && TYP_STUDIA(N)
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The aim of this course is to present more advanced parts of real functions, e.g. generalized notion of differentiability, indefinite Lebesgue integral or approximations of real functions.
Syllabus
  • 1. Differentiability
    2. Indefinite Lebesgue integral
    3. Approximation of real functions
    4. Interchangeability of the order of limit transitions
Literature
    required literature
  • A. M. Bruckner, J. B. Bruckner, B. S. Thomson. Real Analysis. Upper Saddle River, New Jersey, 1997. ISBN 0-13-458886-X. info
    recommended literature
  • M. Švec, T. Šalát, T. Neubrunn. Matematická analýza funkcií reálnej premennej. Bratislava, 1987. info
  • V. Jarník. Integrální počet II. Praha, 1984. info
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is also listed under the following terms Summer 2022, Summer 2023, Summer 2024.
  • Enrolment Statistics (Summer 2021, recent)
  • Permalink: https://is.slu.cz/course/sumu/summer2021/MU18024