MU01001 Matematická analýza I

Matematický ústav v Opavě
zima 2010
Rozsah
3/0/0. 5 kr. Ukončení: zk.
Vyučující
doc. RNDr. Marta Štefánková, Ph.D. (přednášející)
Garance
doc. RNDr. Marta Štefánková, Ph.D.
Matematický ústav v Opavě
Předpoklady
MU01901 Matematická analýza I-cvičení || MU01911 Matematická analýza I-cvičení
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 11 mateřských oborů, zobrazit
Cíle předmětu
Jedná se o první část základního kurzu matematické analýzy. Obsahem tohoto předmětu je analýza reálných funkcí jedné reálné proměnné, hlavními tématy jsou posloupnosti, vlastnot úplnosti, řady a lokální a globální chování funkcí.
Osnova
  • 1. Reálná čísla a monotónní posloupnosti (reálná čísla, rostoucí posloupnost, limita rostoucí posloupnosti, klesající posloupnost, vlastnost úplnosti)
    2. Odhady a aproximace (nerovnosti, odhady, dokazování ohraničenosti, absolutní hodnoty, aproximace, terminologie "pro velká n")
    3. Limita posloupnosti (definice, jednoznačnost limity, nekonečné limity, limita a^n)
    4. Odchylka (definice, odchylka pro geometrické řady)
    5. Limitní věty pro posloupnosti (limita součtu, součinu a podílu, porovnávací tvrzení, podposloupnost)
    6. Vlastnost úplnosti (intervaly do sebe zapadající, hromadné body posloupnosti, věta Bolzano - Weierstrassova, cauchyovská posloupnost, vlastnost úplnosti pro množiny)
    7. Nekonečné řady (řady a posloupnosti, základní kritéria konvergence, konvergence řad se zápornými členy, podílové a odmocninové kritérium, integrální kritérium, řady se střídavými znaménky - Cauchyovo kritérium, změna pořadí členů řady)
    8. Mocninné řady (mocninná řada, poloměr konvergence, součet mocninných řad, součin mocninných řad)
    9. Funkce jedné proměnné (funkce, algebraické operace s funkcemi, základní vlastnosti funkcí, inverzní funkce, elementární funkce)
    10. Lokální a globální chování (intervaly, lokální chování, lokální a globální vlastnosti funkcí)
Literatura
    povinná literatura
  • A. P. Mattuck. Introduction to Analysis. Prentice Hall, New Jersey, 1999. info
    doporučená literatura
  • L. Zajíček. Vybrané úlohy z matematické analýzy. Matfyzpress, Praha, 2000. info
  • REKTORYS, K. a kol. Přehled užité matematiky I, II. Praha. SNTL, 1995. ISBN 80-85849-92-5. info
  • K. Polák. Přehled středoškolské matematiky. SPN, 1991. info
  • V. Novák. Diferenciální počet v R. MU, Brno, 1989. info
  • F. Jirásek, E. Kriegelstein, Z. Tichý. Sbírka příkladů z matematiky. SNTL, Praha, 1989. info
  • R. A. Adams. Single Variable Calculus. Addison-Weseley Publischers Limited, 1983. info
  • J. Bečvář. Seznamte se s množinami. SNTL, 1982. info
  • L. Leithold. The Calculus with Analytic Geometry. Harper & Row, 1981. info
  • S. I. Grossman. Calculus. Academic Press, 1977. info
  • V. Jarník. Diferenciální počet I. ČSAV, Praha, 1963. info
Informace učitele
Požadavky pro získání zápočtu určuje cvičící. Zkouška se skládá ze dvou částí - písemné a ústní. Po úspěšném absolvování písemné části následuje část ústní, na které se prověřují znalosti učiva daného předmětu.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 1997, zima 1998, zima 1999, zima 2000, zima 2001, zima 2002, zima 2003, zima 2004, zima 2005, zima 2006, zima 2007, zima 2008, zima 2009, zima 2011, zima 2012, zima 2013, zima 2014, zima 2015, zima 2016, zima 2017, zima 2018, zima 2019, zima 2020, zima 2021.