MU01001 Matematická analýza I

Matematický ústav v Opavě
zima 2016
Rozsah
3/0/0. 5 kr. Ukončení: zk.
Vyučující
doc. RNDr. Marta Štefánková, Ph.D. (přednášející)
Garance
doc. RNDr. Marta Štefánková, Ph.D.
Matematický ústav v Opavě
Předpoklady
MU01901 Matematická analýza I-cvičení || MU01911 Matematická analýza I-cvičení
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Jedná se o první část základního kurzu matematické analýzy. Obsahem tohoto předmětu je analýza reálných funkcí jedné reálné proměnné, hlavními tématy jsou posloupnosti, vlastnot úplnosti, řady a lokální a globální chování funkcí.
Osnova
  • 0. Opakování
    (základy výrokové algebry, množiny, systémy množin, kartézský součin množin, binární relace, zobrazení)
    1. Reálná čísla
    (definice, axiom spojitosti; množina přirozených čísel, princip matematické indukce, celá čísla, racionální čísla, iracionální čísla; infimum, supremum, věta o infimu, věta o supremu)
    2. Topologické vlastnosti množiny reálných čísel
    (topologie, otevřená a uzavřená množina, přirozená topologie na R, triviální, diskrétní, Hausdorffova topologie; souvislá množina, kompaktní množina)
    3. Reálné posloupnosti
    (definice, limita posloupnosti, pravidla pro počítání s limitami; nevlastní limita, rozšířená množina reálných čísel; limes superior, limes inferior; hromadný bod; vybraná posloupnost)
    4. Funkce
    (sudost, lichost, periodičnost, ohraničenost, součet, součin, rozdíl,
    podíl, absolutní hodnota, maximum, minimum, zúžení, onotónnost
    funkcí)
    5. Spojitost
    (definice, kritéria spojitosti, zúžení spojité funkce, spojitost zleva a
    zprava; spojitost a limita posloupnosti, spojitost a algebraické operace, složení spojitých funkcí; spojitost a kompaktní množiny, spojitost a souvislé množiny)
    6. Limity funkcí
    (definice, věta o jednoznačnosti limity, kritéria existence limity; limita zleva a zprava; pravidla pro počítání s limitami, věta o limitě tří funkcí, spojitost a limita)
    7. Derivace
    (definice, derivace a spojitost, pravidla pro počítání s derivacemi, derivace složené funkce, derivace inverzní funkce, derivace elementárních funkcí; obecné věty o derivaci (věta Rolleova, věta Lagrangeova, věta Cauchyova), l'Hospitalovo pravidlo; Taylorův vzorec (Taylorův polynom, Taylorův vzorec, zbytek v Taylorově vzorci, věta Taylorova, Lagrangeův tvar
    zbytku, Maclaurinovy vzorce pro elementární funkce))
Literatura
    povinná literatura
  • A. P. Mattuck. Introduction to Analysis. Prentice Hall, New Jersey, 1999. info
    doporučená literatura
  • V. Novák. Diferenciální počet funkcí jedné proměnné. MU, Brno. info
  • L. Zajíček. Vybrané úlohy z matematické analýzy. Matfyzpress, Praha, 2000. info
  • M. Krupka. Pomocné učebny texty. MÚ SU, Opava, 1999. info
  • REKTORYS, K. a kol. Přehled užité matematiky I, II. Praha. SNTL, 1995. ISBN 80-85849-92-5. info
  • J. Štefánek. Matematická analýza I. MÚ SU, Opava, 1993. info
  • K. Polák. Přehled středoškolské matematiky. SPN, 1991. info
  • V. Novák. Diferenciální počet v R. MU, Brno, 1989. info
  • F. Jirásek, E. Kriegelstein, Z. Tichý. Sbírka příkladů z matematiky. SNTL, Praha, 1989. info
  • R. A. Adams. Single Variable Calculus. Addison-Weseley Publischers Limited, 1983. info
  • J. Bečvář. Seznamte se s množinami. SNTL, 1982. info
  • L. Leithold. The Calculus with Analytic Geometry. Harper & Row, 1981. info
  • S. I. Grossman. Calculus. Academic Press, 1977. info
  • V. Jarník. Diferenciální počet I. ČSAV, Praha, 1963. info
Informace učitele
Účast na přednáškách je žádoucí. Studenti budou během první přednášky seznámeni s požadavky přednášejícího. 
Zkouška se skládá ze dvou částí - písemné a ústní. Po úspěšném absolvování písemné části následuje část ústní, na které se prověřují znalosti učiva daného předmětu. 
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 1997, zima 1998, zima 1999, zima 2000, zima 2001, zima 2002, zima 2003, zima 2004, zima 2005, zima 2006, zima 2007, zima 2008, zima 2009, zima 2010, zima 2011, zima 2012, zima 2013, zima 2014, zima 2015, zima 2017, zima 2018, zima 2019, zima 2020, zima 2021.