MU:MU03038 Diferenciální geometrie I - Informace o předmětu
MU03038 Diferenciální geometrie I
Matematický ústav v Opavězima 2019
- Rozsah
- 2/2/0. 6 kr. Ukončení: zk.
- Vyučující
- prof. RNDr. Artur Sergyeyev, Ph.D., DSc. (přednášející)
RNDr. Petr Vojčák, Ph.D. (cvičící) - Garance
- prof. RNDr. Artur Sergyeyev, Ph.D., DSc.
Matematický ústav v Opavě - Rozvrh
- Út 15:35–17:10 R2
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- TYP_STUDIA(BN)
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Aplikovaná matematika (program MU, B1101)
- Geometrie a globální analýza (program MU, N1101)
- Matematická analýza (program MU, N1101)
- Obecná matematika (program MU, B1101)
- Cíle předmětu
- Diferenciální geometrie je část geometrie, která využívá ke studiu křivek, (hyper)ploch apod. metody diferenciálního počtu. Diferenciální geometrie se při studiu geometrických útvarů zaměřuje na tzv. invariantní vlastnosti, které nezávisí na volbě soustavy souřadnic. Diferenciální geometrie se zabývá především lokálními vlastnostmi geometrických útvarů, tedy vlastností týkajících se dostatečně malých částí těchto útvarů.
- Osnova
- - Hladké variety (definice, souřadnicové systémy, atlasy, podvariety, příklady variet, zobrazení variet)
- Tečný prostor a kotečný prostor k varietě a jejich vztah
(definice a vlastnosti, tečné vektory křivek, tečné zobrazení, tečný a kotečný bandl)
- Vektorová pole na varietách a jejich vlastnosti
(různé definice vektorového pole a jejich vztahy, Lieova závorka a její vlastnosti, F-vázáná vektorová pole a jejich vlastnosti, jednoparametrické grupy, toky a integrální křivky a jejich vztahy)
- Diferenciální formy na varietách a jejich vlastnosti
(definice diferenciální formy; kotečné zobrazení (pullback), externí součin, Lieova derivace,
externí derivace, kontrakce a jejich vztahy a vlastnosti)
- - Hladké variety (definice, souřadnicové systémy, atlasy, podvariety, příklady variet, zobrazení variet)
- Literatura
- doporučená literatura
- S. Caroll. Lecture Notes on General Relativity. URL info
- D. Krupka. Matematické základy OTR. info
- M. Fecko. Diferenciálna geometria a Lieove grupy pre fyzikov. Bratislava, Iris, 2004. info
- C. Isham. Modern Differential Geometry for Physicists. Singapore, 1999. info
- J. Musilová, D. Krupka. Integrální počet na Euklidových prostorech a diferencovatelných varietách. SPN, Praha, 1982. info
- M. Spivak. Calculus on Manifolds. 1965. info
- Informace učitele
- Účast na přednáškách je žádoucí. Přednášející během první přednášky sdělí studentům své požadavky ohledně podmínek úspěšného absolvování předmětu. K udělení zápočtu je zapotřebí získat alespoň 60 procent bodů ze zápočtových písemek (zpravidla jsou to dvě písemky během semestru) nebo 70 procent bodů z opravné zápočtové písemky. Přesné podmínky a data konání písemek stanovuje cvičící. Zkouška je ústní. Na ní se prověřují odborné znalosti a dovednosti studentů získané během studia daného předmětu. Získání zápočtu je předpokladem pro připouštění ke zkoušce.
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2019, nejnovější)
- Permalink: https://is.slu.cz/predmet/sumu/zima2019/MU03038