Detailed Information on Publication Record
2017
Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric
KOKKOTAS, Konstantinos D., Roman KONOPLYA and Alexander ZHIDENKOBasic information
Original name
Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric
Authors
KOKKOTAS, Konstantinos D. (300 Greece), Roman KONOPLYA (804 Ukraine, belonging to the institution) and Alexander ZHIDENKO (804 Ukraine)
Edition
Physical Review D, 2017, 2470-0010
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10308 Astronomy
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
RIV identification code
RIV/47813059:19240/17:A0000054
Organization unit
Faculty of Philosophy and Science in Opava
UT WoS
000409259700004
Keywords in English
black holes; Einstein-dilaton-Gauss-Bonnet (EdGB) theory; metric
Tags
International impact, Reviewed
Změněno: 5/4/2018 14:28, RNDr. Jan Hladík, Ph.D.
Abstract
V originále
We construct an analytical approximation for the numerical black hole metric of P. Kanti et al. [Phys. Rev. D 54, 5049 (1996)] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory. The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state, the analytical formula has a maximal relative error of a fraction of one percent already within the third order of the continued fraction expansion. The suggested analytical representation of the numerical black hole metric is relatively compact and a good approximation in the whole space outside the black hole event horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles' motion, perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton field.