MÁLEK, Michal and Samuel Joshua ROTH. Constant slope models and perturbation. Israel Journal of Mathematics. Jerusalem, Israel: The Hebrew University Magnes Press, 2019, vol. 230, No 1, p. 213-237. ISSN 0021-2172. doi:10.1007/s11856-018-1814-x.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Constant slope models and perturbation
Authors MÁLEK, Michal (203 Czech Republic, guarantor, belonging to the institution) and Samuel Joshua ROTH (840 United States of America, belonging to the institution).
Edition Israel Journal of Mathematics, Jerusalem, Israel, The Hebrew University Magnes Press, 2019, 0021-2172.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10101 Pure mathematics
Country of publisher Israel
Confidentiality degree is not subject to a state or trade secret
WWW Israel Journal of Mathematics
RIV identification code RIV/47813059:19610/19:A0000055
Organization unit Mathematical Institute in Opava
Doi http://dx.doi.org/10.1007/s11856-018-1814-x
UT WoS 000468851900010
Keywords (in Czech) Entropie; tranzitivita; funkce s konstantním sklonem; konjugace
Keywords in English Entropy; transitivity; constant slope map; conjugation
Tags
Tags International impact, Reviewed
Changed by Changed by: Mgr. Aleš Ryšavý, učo 28000. Changed: 20/4/2020 13:59.
Abstract
We sharpen an estimate for the growth rate of preimages of a point under a transitive piecewise monotone interval map. Then we apply our estimate to study the continuity of the operator which assigns to such a map its constant slope model.
Abstract (in Czech)
Upřesňujme odhad růstu vzorů bodů při tranzitivním po částech monotónním intervalovým zobrazení, tyto odhady jsou následně použity ke studiu spojitosti operátoru, který takové funkci přiřazuje zobrazení s konstantním sklonem.
PrintDisplayed: 4/2/2023 14:17