Detailed Information on Publication Record
2020
Connection and curvature on bundles on Bergman and Hardy spaces
ENGLIŠ, Miroslav and Genkai ZHANGBasic information
Original name
Connection and curvature on bundles on Bergman and Hardy spaces
Authors
ENGLIŠ, Miroslav (203 Czech Republic, guarantor, belonging to the institution) and Genkai ZHANG (752 Sweden)
Edition
Documenta Mathematica, Berlin (Germany), Deutsche Mathematiker-Vereinigung e.V. 2020, 1431-0643
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
RIV identification code
RIV/47813059:19610/20:A0000067
Organization unit
Mathematical Institute in Opava
UT WoS
000592702600007
Keywords in English
Bergman space; bundle of Bergman spaces; Fock space; Fock bundle; Siegel domain; Chern connection and curvature; Toeplitz operator
Tags
Tags
International impact, Reviewed
Links
GA16-25995S, research and development project.
Změněno: 22/4/2021 13:01, Mgr. Aleš Ryšavý
Abstract
V originále
We consider a complex domain D x V in the space C-m x C-n and a family of weighted Bergman spaces on V defined by a weight e(-k phi(z , w)) for a pluri-subharmonic function phi(z, w) with a quantization parameter k. The weighted Bergman spaces define an infinite dimensional Hermitian vector bundle over the domain D. We consider the natural covariant differentiation del(z) on the sections, namely the unitary Chern connections preserving the Bergman norm. We prove a Dixmier trace formula for the curvature of the unitary connection and we find the asymptotic expansion for the curvatures R-(k)(Z,Z) for large k and for the induced connection [del((k))(Z), T-f((k))] on Toeplitz operators T-f. In the special case when the domain D is the Siegel domain and the weighted Bergman spaces are the Fock spaces we find the exact formula for [del((k))(Z), T-f((k))] as Toeplitz operators. This generalizes earlier work of J.E. Andersen in Comm. Math. Phys. 255 (2005), 727-745. Finally, we also determine the formulas for the curvature and for the induced connection in the general case of D x V replaced by a general strictly pseudoconvex domain V subset of C-m x C-n fibered over a domain D subset of C-m. The case when the Bergman space is replaced by the Hardy space on the boundary of the domain is likewise discussed.