J 2020

Connection and curvature on bundles on Bergman and Hardy spaces

ENGLIŠ, Miroslav and Genkai ZHANG

Basic information

Original name

Connection and curvature on bundles on Bergman and Hardy spaces

Authors

ENGLIŠ, Miroslav (203 Czech Republic, guarantor, belonging to the institution) and Genkai ZHANG (752 Sweden)

Edition

Documenta Mathematica, Berlin (Germany), Deutsche Mathematiker-Vereinigung e.V. 2020, 1431-0643

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Germany

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

RIV identification code

RIV/47813059:19610/20:A0000067

Organization unit

Mathematical Institute in Opava

UT WoS

000592702600007

Keywords in English

Bergman space; bundle of Bergman spaces; Fock space; Fock bundle; Siegel domain; Chern connection and curvature; Toeplitz operator

Tags

Tags

International impact, Reviewed

Links

GA16-25995S, research and development project.
Změněno: 22/4/2021 13:01, Mgr. Aleš Ryšavý

Abstract

V originále

We consider a complex domain D x V in the space C-m x C-n and a family of weighted Bergman spaces on V defined by a weight e(-k phi(z , w)) for a pluri-subharmonic function phi(z, w) with a quantization parameter k. The weighted Bergman spaces define an infinite dimensional Hermitian vector bundle over the domain D. We consider the natural covariant differentiation del(z) on the sections, namely the unitary Chern connections preserving the Bergman norm. We prove a Dixmier trace formula for the curvature of the unitary connection and we find the asymptotic expansion for the curvatures R-(k)(Z,Z) for large k and for the induced connection [del((k))(Z), T-f((k))] on Toeplitz operators T-f. In the special case when the domain D is the Siegel domain and the weighted Bergman spaces are the Fock spaces we find the exact formula for [del((k))(Z), T-f((k))] as Toeplitz operators. This generalizes earlier work of J.E. Andersen in Comm. Math. Phys. 255 (2005), 727-745. Finally, we also determine the formulas for the curvature and for the induced connection in the general case of D x V replaced by a general strictly pseudoconvex domain V subset of C-m x C-n fibered over a domain D subset of C-m. The case when the Bergman space is replaced by the Hardy space on the boundary of the domain is likewise discussed.