J 2020

Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation

OPANASENKO, Stanislav and Roman POPOVYCH

Basic information

Original name

Generalized symmetries and conservation laws of (1+1)-dimensional Klein-Gordon equation

Authors

OPANASENKO, Stanislav (804 Ukraine) and Roman POPOVYCH (804 Ukraine, belonging to the institution)

Edition

Journal of Mathematical Physics, Melville (USA), American Institute of Physics, 2020, 0022-2488

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/47813059:19610/20:A0000080

Organization unit

Mathematical Institute in Opava

UT WoS

000582910500001

Keywords in English

Korteweg-De Vries equation; Classification; Operators; Systems; Fields; Euler

Tags

Tags

International impact, Reviewed

Links

EF16_027/0008521, research and development project.
Změněno: 6/4/2021 13:39, Mgr. Aleš Ryšavý

Abstract

V originále

Using advantages of nonstandard computational techniques based on the light-cone variables, we explicitly find the algebra of generalized symmetries of the (1 + 1)-dimensional Klein-Gordon equation. This allows us to describe this algebra in terms of the universal enveloping algebra of the essential Lie invariance algebra of the Klein-Gordon equation. Then, we single out variational symmetries of the corresponding Lagrangian and compute the space of local conservation laws of this equation, which turns out to be generated, up to the action of generalized symmetries, by a single first-order conservation law. Moreover, for every conservation law, we find a conserved current of minimal order contained in this conservation law.