2020
			
	    
	
	
    Neutron Star Radius-to-mass Ratio from Partial Accretion Disk Occultation as Measured through Fe K alpha Line Profiles
LA PLACA, Riccardo; Luigi STELLA; Alessandro PAPITTO; Pavel BAKALA; Tiziana DI SALVO et. al.Základní údaje
Originální název
Neutron Star Radius-to-mass Ratio from Partial Accretion Disk Occultation as Measured through Fe K alpha Line Profiles
	Autoři
LA PLACA, Riccardo (380 Itálie, domácí); Luigi STELLA (380 Itálie); Alessandro PAPITTO; Pavel BAKALA (203 Česká republika, domácí); Tiziana DI SALVO; Maurizio FALANGA; Vittorio DE FALCO (380 Itálie, domácí) a Alessandra DE ROSA
			Vydání
 Astrophysical Journal, 2020, 0004-637X
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10308 Astronomy
		Stát vydavatele
Velká Británie a Severní Irsko
		Utajení
není předmětem státního či obchodního tajemství
		Odkazy
Impakt faktor
Impact factor: 5.877
			Kód RIV
RIV/47813059:19630/20:A0000082
		Organizační jednotka
Fyzikální ústav v Opavě
			UT WoS
000529874600001
		EID Scopus
2-s2.0-85085148364
		Klíčová slova anglicky
Neutron stars; Low-mass X-ray binary stars; Stellar accretion disks; General relativity; X-ray sources
		Příznaky
Mezinárodní význam, Recenzováno
		
				
				Změněno: 31. 3. 2022 10:13, Mgr. Pavlína Jalůvková
				
		Anotace
V originále
We present a new method to measure the radius-to-mass ratio (R/M) of weakly magnetic, disk-accreting neutron stars by exploiting the occultation of parts of the inner disk by the star itself. This occultation imprints characteristic features on the X-ray line profile that are unique and are expected to be present in low-mass X-ray binary systems seen under inclinations higher than 65 degrees. We analyze a Nuclear Spectroscopic Telescope Array observation of a good candidate system, 4U 1636-53, and find that X-ray spectra from current instrumentation are unlikely to single out the occultation features owing to insufficient signal-to-noise. Based on an extensive set of simulations we show that large-area X-ray detectors of the future generation could measure R/M to 2 3% precision over a range of inclinations. Such is the precision in radius determination required to derive tight constraints on the equation of state of ultradense matter and it represents the goal that other methods also aim to achieve in the future.