2021
Air equivalence of some solid fluoropolymers in photon beams
HABRMAN, PetrZákladní údaje
Originální název
Air equivalence of some solid fluoropolymers in photon beams
Autoři
HABRMAN, Petr (203 Česká republika, garant, domácí)
Vydání
Journal of Instrumentation, England, 2021, 1748-0221
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10304 Nuclear physics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19630/21:A0000128
Organizační jednotka
Fyzikální ústav v Opavě
UT WoS
000682949000014
Klíčová slova anglicky
Dosimetry concepts and apparatus;Interaction of radiation with matter;Models and simulations
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 3. 2022 13:53, Mgr. Pavlína Jalůvková
Anotace
V originále
Two fluoropolymers polyvinylidene fluoride (PVDF) and ethylene tetrafluoroethylene (ETFE), which differ only in chemical structure and have the same atomic composition, were evaluated for use in air simulation for phantom measurements in photon beams. Photon interaction was modelled using US-NIST datasets. In order to mimic the radiation properties of air with another material, values of the following quantities were chosen for comparison: total mass attenuation coefficients, mass-energy absorption coefficients, total electron mass stopping powers, mass collision stopping powers, and mass scattering powers. The calculated ratios of the corresponding coefficients or stopping powers between the material and air were the values of interest. The results for fluoropolymers were compared with other polymers commonly used in the manufacture of phantoms. The results show that in the photon energy range from 150 keV to 1 GeV both fluoropolymers exhibit excellent dosimetric properties slightly better than air equivalent plastic C552. The effect of a carbon-based filler added to the fluoropolymer to ensure the electrical conductivity of the resulting composite was also investigated. It has been found that the increased carbon-based filler content (up to 20 wt% of carbon) added to the fluoropolymer has a very small effect on the radiation properties of the composite.