J 2023

Some notes on non-reciprocal matrices in the multiplicative pairwise comparisons framework

MAZUREK, Jiří a Pedro LINARES

Základní údaje

Originální název

Some notes on non-reciprocal matrices in the multiplicative pairwise comparisons framework

Autoři

MAZUREK, Jiří (203 Česká republika, garant, domácí) a Pedro LINARES (724 Španělsko)

Vydání

Journal of the Operational Research Society, 2023, 0160-5682

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19520/23:A0000370

Organizační jednotka

Obchodně podnikatelská fakulta v Karviné

UT WoS

001019850500001

Klíčová slova anglicky

pairwise comparisons; multiple-criteria decision making; reciprocity; consistency

Příznaky

Mezinárodní význam, Recenzováno

Návaznosti

GA21-03085S, projekt VaV.
Změněno: 2. 4. 2024 08:10, Miroslava Snopková

Anotace

V originále

In most pairwise comparisons methods such as the Analytic Hierarchy Process (AHP) it is assumed that pairwise comparisons are reciprocal, since this is a necessary condition for consistent judgments. However, several empirical studies have shown that the condition of reciprocity is not satisfied when dealing with real human preferences, which might be significantly non-reciprocal due to inherent cognitive biases. This empirical evidence indicates that the study of non-reciprocal pairwise comparisons matrices should not be neglected when dealing with real decision-making processes. However, the literature on this topic is scarce and fragmented. The aim of our study is to fill this gap by discussing advantages and disadvantages of using non-reciprocal judgements multiplicative pairwise comparisons (MPCs), reviewing existing literature and introducing a new measure of non-reciprocity with some natural and desirable properties. In addition, we perform Monte Carlo simulations on randomly generated non-reciprocal MPC matrices and provide percentile tables allowing decision makers to decide whether a level of non-reciprocity of a given MPC matrix is acceptable or not.