2023
Some notes on non-reciprocal matrices in the multiplicative pairwise comparisons framework
MAZUREK, Jiří a Pedro LINARESZákladní údaje
Originální název
Some notes on non-reciprocal matrices in the multiplicative pairwise comparisons framework
Autoři
MAZUREK, Jiří (203 Česká republika, garant, domácí) a Pedro LINARES (724 Španělsko)
Vydání
Journal of the Operational Research Society, 2023, 0160-5682
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19520/23:A0000370
Organizační jednotka
Obchodně podnikatelská fakulta v Karviné
UT WoS
001019850500001
Klíčová slova anglicky
pairwise comparisons; multiple-criteria decision making; reciprocity; consistency
Příznaky
Mezinárodní význam, Recenzováno
Návaznosti
GA21-03085S, projekt VaV.
Změněno: 2. 4. 2024 08:10, Miroslava Snopková
Anotace
V originále
In most pairwise comparisons methods such as the Analytic Hierarchy Process (AHP) it is assumed that pairwise comparisons are reciprocal, since this is a necessary condition for consistent judgments. However, several empirical studies have shown that the condition of reciprocity is not satisfied when dealing with real human preferences, which might be significantly non-reciprocal due to inherent cognitive biases. This empirical evidence indicates that the study of non-reciprocal pairwise comparisons matrices should not be neglected when dealing with real decision-making processes. However, the literature on this topic is scarce and fragmented. The aim of our study is to fill this gap by discussing advantages and disadvantages of using non-reciprocal judgements multiplicative pairwise comparisons (MPCs), reviewing existing literature and introducing a new measure of non-reciprocity with some natural and desirable properties. In addition, we perform Monte Carlo simulations on randomly generated non-reciprocal MPC matrices and provide percentile tables allowing decision makers to decide whether a level of non-reciprocity of a given MPC matrix is acceptable or not.