2023
A comparative study on precision of pairwise comparison matrices
CAVALLO, Bice, Jiří MAZUREK a Jaroslav RAMÍKZákladní údaje
Originální název
A comparative study on precision of pairwise comparison matrices
Autoři
CAVALLO, Bice (380 Itálie, garant), Jiří MAZUREK (203 Česká republika, domácí) a Jaroslav RAMÍK (203 Česká republika, domácí)
Vydání
Fuzzy optimization and decision making, 2023, 1573-2908
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/47813059:19520/23:A0000420
Organizační jednotka
Obchodně podnikatelská fakulta v Karviné
UT WoS
001094483600001
Klíčová slova anglicky
Multi-criteria decision making; Pairwise comparison matrix; Precision; Abelian linearly ordered group
Změněno: 1. 4. 2024 09:42, Miroslava Snopková
Anotace
V originále
Pairwise comparisons have been a long-standing technique for comparing alternatives/criteria and their role has been pivotal in the development of modern decision making methods such as the Analytic Hierarchy/Network Process (AHP/ANP), the Best-Worst method (BWM), PROMETHEE and many others. Pairwise comparisons can be performed within several frameworks such as multiplicative, additive and fuzzy representations of preferences, which are particular instances of a more general framework based on Abelian linearly ordered groups. Though multiplicative, additive and fuzzy representations of preferences are widely used in practice, it is unknown whether decision makers are equally precise in the three aforementioned representations when they measure objective data. Therefore, the aim of this paper is to design, carry out and analyse an experiment with over 200 respondents (undergraduate university students) from two countries, Czechia and Italy, to compare precision of the respondents in all three representations. In the experiment, respondents pairwise compared (by approximation) the areas of four geometric figures and then, the imprecision of their assessments was measured by computing the distance with the exact pairwise comparisons. We grouped the respondents in such a way that each participant was allowed to deal with a unique type of representation. The outcomes of the experiment indicate that the multiplicative approach is the most precise.