J 2023

A comparative study on precision of pairwise comparison matrices

CAVALLO, Bice, Jiří MAZUREK a Jaroslav RAMÍK

Základní údaje

Originální název

A comparative study on precision of pairwise comparison matrices

Autoři

CAVALLO, Bice (380 Itálie, garant), Jiří MAZUREK (203 Česká republika, domácí) a Jaroslav RAMÍK (203 Česká republika, domácí)

Vydání

Fuzzy optimization and decision making, 2023, 1573-2908

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10200 1.2 Computer and information sciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/47813059:19520/23:A0000420

Organizační jednotka

Obchodně podnikatelská fakulta v Karviné

UT WoS

001094483600001

Klíčová slova anglicky

Multi-criteria decision making; Pairwise comparison matrix; Precision; Abelian linearly ordered group
Změněno: 1. 4. 2024 09:42, Miroslava Snopková

Anotace

V originále

Pairwise comparisons have been a long-standing technique for comparing alternatives/criteria and their role has been pivotal in the development of modern decision making methods such as the Analytic Hierarchy/Network Process (AHP/ANP), the Best-Worst method (BWM), PROMETHEE and many others. Pairwise comparisons can be performed within several frameworks such as multiplicative, additive and fuzzy representations of preferences, which are particular instances of a more general framework based on Abelian linearly ordered groups. Though multiplicative, additive and fuzzy representations of preferences are widely used in practice, it is unknown whether decision makers are equally precise in the three aforementioned representations when they measure objective data. Therefore, the aim of this paper is to design, carry out and analyse an experiment with over 200 respondents (undergraduate university students) from two countries, Czechia and Italy, to compare precision of the respondents in all three representations. In the experiment, respondents pairwise compared (by approximation) the areas of four geometric figures and then, the imprecision of their assessments was measured by computing the distance with the exact pairwise comparisons. We grouped the respondents in such a way that each participant was allowed to deal with a unique type of representation. The outcomes of the experiment indicate that the multiplicative approach is the most precise.