2023
Point and generalized symmetries of the heat equation revisited
KOVAL, Serhii D a Roman POPOVYCHZákladní údaje
Originální název
Point and generalized symmetries of the heat equation revisited
Autoři
KOVAL, Serhii D a Roman POPOVYCH (804 Ukrajina, garant, domácí)
Vydání
Journal of Mathematical Analysis and Applications, San Diego (USA), Academic Press Inc. Elsevier Science, 2023, 0022-247X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/47813059:19610/23:A0000142
Organizační jednotka
Matematický ústav v Opavě
UT WoS
001018236500001
Klíčová slova anglicky
Discrete symmetry; Generalized symmetry; Heat equation; Lie symmetry; Point-symmetry pseudogroup; Subalgebra classification
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 4. 2024 13:06, Mgr. Aleš Ryšavý
Anotace
V originále
We derive a nice representation for point symmetry transformations of the (1+1)-dimensional linear heat equation and properly interpret them. This allows us to prove that the pseudogroup of these transformations has exactly two connected components. That is, the heat equation admits a single independent discrete symmetry, which can be chosen to be alternating the sign of the dependent variable. We introduce the notion of pseudo-discrete elements of a Lie group and show that alternating the sign of the space variable, which was for a long time misinterpreted as a discrete symmetry of the heat equation, is in fact a pseudo-discrete element of its essential point symmetry group. The classification of subalgebras of the essential Lie invariance algebra of the heat equation is enhanced and the description of generalized symmetries of this equation is refined as well. We also consider the Burgers equation because of its relation to the heat equation and prove that it admits no discrete point symmetries. The developed approach to point-symmetry groups whose elements have components that are linear fractional in some variables can directly be extended to many other linear and nonlinear differential equations.