2024
			
	    
	
	
    Radiative back-reaction on charged particle motion in the dipole magnetosphere of neutron stars
STUCHLÍK, Zdeněk; Jaroslav VRBA; Martin KOLOŠ a Arman TURSUNOVZákladní údaje
Originální název
Radiative back-reaction on charged particle motion in the dipole magnetosphere of neutron stars
	Autoři
STUCHLÍK, Zdeněk (203 Česká republika, domácí); Jaroslav VRBA (203 Česká republika, domácí); Martin KOLOŠ (203 Česká republika, domácí) a Arman TURSUNOV (860 Uzbekistán, domácí)
			Vydání
 Journal of High Energy Astrophysics, 2024, 2214-4048
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10308 Astronomy
		Stát vydavatele
Nizozemské království
		Utajení
není předmětem státního či obchodního tajemství
		Odkazy
Impakt faktor
Impact factor: 10.500
			Kód RIV
RIV/47813059:19630/24:A0000338
		Organizační jednotka
Fyzikální ústav v Opavě
			UT WoS
001360637000001
		EID Scopus
2-s2.0-85209256730
		Klíčová slova anglicky
Neutron star;Dipole magnetic field; Charged particles; Raditive back-reaction;Orbital widening
		Štítky
Příznaky
Mezinárodní význam, Recenzováno
		Návaznosti
GA23-07043S, projekt VaV. 
			
				
				Změněno: 4. 3. 2025 14:06, Mgr. Pavlína Jalůvková
				
		Anotace
V originále
The motion of charged particles under the Lorentz force in the magnetosphere of neutron stars, represented by a dipole field in the Schwarzschild spacetime, can be determined by an effective potential, whose local extrema govern circular orbits both in and off the equatorial plane, which coincides with the symmetry plane of the dipole field. In this work, we provide a detailed description of the properties of these "conservative" circular orbits and, using the approximation represented by the Landau-Lifshitz equation, examine the role of the radiative back- reaction force that influences the motion of charged particles following both the in and off equatorial circular orbits, as well as the chaotic orbits confined to belts centered around the circular orbits. To provide clear insight into these dynamics, we compare particle motion with and without the back-reaction force. We demonstrate that, in the case of an attractive Lorentz force, the back-reaction leads to the charged particles falling onto the neutron star's surface in all scenarios considered. For the repulsive Lorentz force, in combination with the back- reaction force, we observe a widening of stable equatorial circular orbits; the off-equatorial orbits shift toward the equatorial plane and subsequently widen if they are sufficiently close to the plane. Otherwise, the off-equatorial orbits evolve toward the neutron star surface. The critical latitude, which separates orbital widening from falling onto the surface, is determined numerically as a function of the electromagnetic interaction's intensity.